Adaptive Control

Adaptive Control, a thirty-year old field, is an advanced control method that is becoming increasingly popular in various engineering applications. The ability to self-correct a controller in the presence of uncertainties using online information is its main and most compelling feature. This course will lay out the foundation of adaptive control in continuous-time and discrete-time systems. Examples from aerospace, propulsion, automotive, and energy systems will be used to elucidate the underlying concepts.

The midterm will be assigned towards the end of March, and will be an open book exam.

Grade distribution: Homework: 20%; Midterm: 40%; Project: 40%

Additional notes will be distributed throughout the semester.

Daily class notes will be available at: http://aaclab.mit.edu/material.php

(aanna@mit.edu)
Adaptive Control

Adaptive Control, a thirty-year old field, is an advanced control method that is becoming increasingly popular in various engineering applications. The ability to self-correct a controller in the presence of uncertainties using online information is its main and most compelling feature. This course will lay out the foundation of adaptive control in continuous-time and discrete-time systems. Examples from aerospace, propulsion, automotive, and energy systems will be used to elucidate the underlying concepts.

The midterm will be assigned towards the end of March, and will be an open book exam.
Adaptive Control

Adaptive Control, a thirty-year old field, is an advanced control method that is becoming increasingly popular in various engineering applications. The ability to self-correct a controller in the presence of uncertainties using online information is its main and most compelling feature. This course will lay out the foundation of adaptive control in continuous-time and discrete-time systems. Examples from aerospace, propulsion, automotive, and energy systems will be used to elucidate the underlying concepts.

The midterm will be assigned towards the end of March, and will be an open book exam.

Grade distribution: Homework: 20%; Midterm: 40%; Project: 40%
Adaptive Control

Adaptive Control, a thirty-year old field, is an advanced control method that is becoming increasingly popular in various engineering applications. The ability to self-correct a controller in the presence of uncertainties using online information is its main and most compelling feature. This course will lay out the foundation of adaptive control in continuous-time and discrete-time systems. Examples from aerospace, propulsion, automotive, and energy systems will be used to elucidate the underlying concepts.

The midterm will be assigned towards the end of March, and will be an open book exam.

Grade distribution: Homework: 20%; Midterm: 40%; Project: 40%

Adaptive Control

Adaptive Control, a thirty-year old field, is an advanced control method that is becoming increasingly popular in various engineering applications. The ability to self-correct a controller in the presence of uncertainties using online information is its main and most compelling feature. This course will lay out the foundation of adaptive control in continuous-time and discrete-time systems. Examples from aerospace, propulsion, automotive, and energy systems will be used to elucidate the underlying concepts.

The midterm will be assigned towards the end of March, and will be an open book exam.

Grade distribution: Homework: 20%; Midterm: 40%; Project: 40%

Additional notes will be distributed throughout the semester. Daily class notes will be available at: http://aaclab.mit.edu/material.php
<table>
<thead>
<tr>
<th>Lecture #</th>
<th>Topic</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Introduction</td>
<td>Feb 4</td>
</tr>
<tr>
<td>1</td>
<td>Adaptive Identification - Error Model 1</td>
<td>Feb 9</td>
</tr>
<tr>
<td>2</td>
<td>Adaptive Control - Error Model 3</td>
<td>Feb 11</td>
</tr>
<tr>
<td>3</td>
<td>Adaptive Control - Scalar Case</td>
<td>Feb 17</td>
</tr>
<tr>
<td>4</td>
<td>Stability Theory</td>
<td>Feb 18</td>
</tr>
<tr>
<td>5</td>
<td>Closed-loop Reference Models</td>
<td>Feb 23</td>
</tr>
<tr>
<td>6</td>
<td>States Accessible: SISO Plants</td>
<td>Feb 25</td>
</tr>
<tr>
<td>7</td>
<td>States Accessible: MIMO Plants</td>
<td>March 2</td>
</tr>
<tr>
<td>8</td>
<td>Adaptive PI Control</td>
<td>March 4</td>
</tr>
<tr>
<td>9</td>
<td>Adaptive PID Control</td>
<td>March 9</td>
</tr>
<tr>
<td>10</td>
<td>Adaptive Phase Lead Compensators</td>
<td>March 11</td>
</tr>
<tr>
<td>Lecture #</td>
<td>Topic</td>
<td>Date</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>11</td>
<td>Uniform Asymptotic Stability and Persistent Excitation</td>
<td>March 16</td>
</tr>
<tr>
<td>12</td>
<td>Review: Stability, Asymptotic Stability</td>
<td>March 18</td>
</tr>
<tr>
<td>13</td>
<td>Persistent Excitation and Adaptive Observers</td>
<td>March 30</td>
</tr>
<tr>
<td>14</td>
<td>Adaptive Control - $n^* = 1$</td>
<td>April 1</td>
</tr>
<tr>
<td>15</td>
<td>Adaptive Control - $n^* = 1$</td>
<td>April 6</td>
</tr>
<tr>
<td>16</td>
<td>Adaptive Control - $n^* \geq 2$</td>
<td>April 8</td>
</tr>
<tr>
<td>17</td>
<td>Adaptive Control - $n^* \geq 2$</td>
<td>April 13</td>
</tr>
<tr>
<td>18</td>
<td>Robust Adaptive Control - Disturbances</td>
<td>April 15</td>
</tr>
<tr>
<td>19</td>
<td>Robust Adaptive Control - Time-varying Parameters</td>
<td>April 22</td>
</tr>
<tr>
<td>20</td>
<td>Robust Adaptive Control - Unmodeled Dynamics</td>
<td>April 27</td>
</tr>
<tr>
<td>21</td>
<td>High Order Tuners</td>
<td>April 29</td>
</tr>
<tr>
<td>22</td>
<td>Back stepping methods</td>
<td>May 4</td>
</tr>
<tr>
<td>23</td>
<td>Adaptive Systems with Saturation</td>
<td>May 6</td>
</tr>
<tr>
<td>24</td>
<td>Project presentations</td>
<td>May 11</td>
</tr>
<tr>
<td>25</td>
<td>Project presentations</td>
<td>May 13</td>
</tr>
</tbody>
</table>
Definition of Adaptation

Biology: Advantageous Conformation of an Organism to Changes
Definition of Adaptation

Biology: Advantageous Conformation of an Organism to Changes

Adaptive Control: The control of Uncertain Systems
Definition of Adaptation

Biology: Advantageous Conformation of an Organism to Changes

Adaptive Control: The control of Uncertain Systems

Other Definitions:
Truxal: An adaptive system is one designed from an adaptive viewpoint.
Definition of Adaptation

Biology: Advantageous Conformation of an Organism to Changes

Adaptive Control: The control of Uncertain Systems

Other Definitions:
Truxal: An adaptive system is one designed from an adaptive viewpoint.

Zadeh: A is adaptive with respect to S_{γ} and Γ if it performs acceptably well for every source in the family $S_{\gamma}, \gamma \in \Gamma$
Definition of Adaptation (contd.)

Bellman:

Deterministic System: When the controller has complete information about the behavior of the inputs, and the system is completely specified.

Stochastic system: When unknown factors are present in the system which appear mathematically as random variables with known distribution functions

Adaptive system: Even less is known about the system and the controller has to learn to improve its performance through the observation of the outputs of the system as it evolves.
Bellman:

Deterministic System: When the controller has complete information about the behavior of the inputs, and the system is completely specified.

Stochastic system: When unknown factors are present in the system which appear mathematically as random variables with known distribution functions

Adaptive system: Even less is known about the system and the controller has to learn to improve its performance through the observation of the outputs of the system as it evolves.

In this course:
Adaptive Control: The control of plants with unknown parameters
Control System

- Open-loop Dynamic System

\[\gamma_{cmd} \rightarrow \text{Plant} \rightarrow y \]
Control System

- Open-loop Dynamic System
- Feedback Control System

Performance Measures: Stability, speed, accuracy
Adaptive Control System

In the presence of uncertainties, using prior and on-line information, the controller adapts itself.
History

Adaptive systems

- Caught the imagination in the 60's
- Several symposia - to define adaptation
- First use in flight control
- Hypersonics program - highly successful
History

Adaptive systems

- Caught the imagination in the 60’s
- Several symposia - to define adaptation
- First use in flight control
- Hypersonics program - highly successful

Five classes of adaptive systems

- Passive Adaptation
- Input Signal Adaptation
- System variable adaptation
- System characteristic adaptation
- Extremum adaptation
Adaptive Control: A Parametric Framework

- Nonlinear, time-varying, with unknown parameter θ
 \[
 \dot{x} = f(x, u, \theta, t) \quad y = h(x, u, \theta, t)
 \]

- Nonlinear, with unknown parameter θ
 \[
 \dot{x} = f(x, u, \theta) \quad y = h(x, u, \theta)
 \]

- Linear Time-Varying (LTV) with unknown parameter θ
 \[
 \dot{x} = A(\theta, t)x + B(\theta, t)u \quad y = C(\theta, t)x + D(\theta, t)u
 \]

- Linear Time-Invariant (LTI) with unknown parameter θ
 \[
 \dot{x} = A(\theta)x + B(\theta)u \quad y = C(\theta)x + D(\theta)u
 \]
Adaptive Control: A Parametric Framework

- Nonlinear, time-varying, with unknown parameter θ
 \[
 \dot{x} = f(x, u, \theta, t) \quad y = h(x, u, \theta, t)
 \]

- Nonlinear, with unknown parameter θ
 \[
 \dot{x} = f(x, u, \theta) \quad y = h(x, u, \theta)
 \]

- Linear Time-Varying (LTV) with unknown parameter θ
 \[
 \dot{x} = A(\theta, t)x + B(\theta, t)u \quad y = C(\theta, t)x + D(\theta, t)u
 \]

- Linear Time-Invariant (LTI) with unknown parameter θ
 \[
 \dot{x} = A(\theta)x + B(\theta)u \quad y = C(\theta)x + D(\theta)u
 \]

Adapt to the unknown parameter
Direct and Indirect Adaptive Control

θₚ: Plant parameter - unknown; θᶜ: Control parameter

Indirect Adaptive Control: Estimate θₚ as $\hat{\theta}_p$. Compute $\hat{\theta}_c$ using $\hat{\theta}_p$.
Also known as Explicit Estimation

Direct Adaptive Control: Directly estimate θᶜ as $\hat{\theta}_c$. Compute the plant estimate $\hat{\theta}_p$ using $\hat{\theta}_c$.
Also known as Implicit Estimation
Parametric Adaptation

- Parameter perturbation methods
- Sensitivity methods
In this course

Many of our discussions will involve

Control designs motivated by linear design methods
Parametrizations of the control structure
Parameter adjustment rules - Adaptive laws

What to measure?
What to adjust? How many parameters?
How often?
How do we adjust?

A Stability Framework
In this course

Many of our discussions will involve

- Control designs motivated by linear design methods
In this course

Many of our discussions will involve

- Control designs motivated by linear design methods
- Parametrizations of the control structure
In this course

Many of our discussions will involve

- Control designs motivated by linear design methods
- Parametrizations of the control structure
- Parameter adjustment rules - **Adaptive laws**
In this course

Many of our discussions will involve

- Control designs motivated by linear design methods
- Parametrizations of the control structure
- Parameter adjustment rules - Adaptive laws
 - What to measure?
 - What to adjust? How many parameters?
 - How often?
 - How do we adjust?
In this course

Many of our discussions will involve

- Control designs motivated by linear design methods
- Parametrizations of the control structure
- Parameter adjustment rules - **Adaptive laws**
 - What to measure?
 - What to adjust? How many parameters?
 - How often?
 - How do we adjust?
- **A Stability Framework**