
 

Abstract—We address the problem of flight control in the 

presence of actuator anomalies. A shared control architecture that 

includes the actions of both a human pilot and an autopilot is 

proposed to ensure resilient tracking performance in the presence 

of anomalies. The pilot is tasked with higher-level decision making 

tasks such as anomaly detection, estimation and command 

regulation. The autopilot is assigned a lower-level task of accurate 

command following, and based on an adaptive control design. The 

main innovations in the proposed shared architecture are the use 

of human pilot in utilizing the concepts of Capacity for Maneuver 

(CfM) and Graceful Command Degradation (GCD), both of which 

originate in Cognitive Sciences and a judicious combination of the 

pilot inputs and the autopilot control action. Together, they 

provide guidelines for a system to be resilient, which corresponds 

to the system’s readiness to respond to unforeseen events. The 

shared control architecture is shown to be capable of achieving 

maximum CfM while allowing minimal GCD, as well as 

satisfactory command following post-anomaly, resulting in 

resilient flight capabilities. The proposed controller is analyzed in 

a simulation study of a nonlinear F-16 aircraft under actuator 

anomalies. It is shown through numerical studies that under 

suitable inputs from the pilot, the shared controller is able to 

deliver a resilient flight.  
 

Index Terms—Resilient Control, Capacity for Maneuver, 

Graceful Command Degradation, Cyber-Physical Systems, Flight 

Control, Adaptive Control, Resilience Engineering.  

I. INTRODUCTION 

LIGHT ANOMALIES  may occur due to a variety of reasons 

such as electromechanical damage, sensor faults, severe 

environmental disturbances, or direct failures in the vehicle 

control surfaces or engines. A standard practice in flight control 

for aerial vehicles is to design a resident flight system so as to 

ensure the desired performance, such as tracking pilot / 

guidance commands robustly during operations while 

minimizing dependencies on possible perturbations in the 

aircraft dynamics caused by environmental disturbances, 

control deficiencies or sensor failures. The goal of a control 

design is to establish an envelope, over which performance is 

robust in the face of disturbances, but the design still has limits-

-disturbances, failures and surprising events can occur that fall 

outside the envelope of robust performance. Systems can be 
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brittle when events challenge its design/performance envelope. 

Resilience, in part, refers to mechanisms that allow a system to 

extend its performance when events challenge boundaries [1]. 

Defining resilience as the property of a system that 

characterizes its ability to withstand and recover from extreme 

and high impact disturbances, and robustness as an ability to 

withstand nominal disturbances, the question that we address in 

this paper is if flight controllers could be designed to not only 

be robust but also resilient. Of particular interest is the design 

of a resilient flight controller that retains the desired tracking 

performance in the presence of severe operational anomalies.  

The approach that we propose to achieve our goal is shared 

control. One way to extend the control envelope is the use of 

shared control architectures where human controllers 

supplement flight control automation. As the capability of the 

automated controller to keep pace with growing disturbances 

saturates, the human flight crew takes over more 

responsibilities in flight control. In such an event, it is important 

to deploy a shared control architecture which addresses the 

problem of bumpy transfers of control from the first stage 

(automated) controller to the second stage (human) controller. 

Current architectures for shared control generally assume a 

partially autonomous machine does all of the work to handle 

variability and disturbances—until external demands imposed 

on the machine exceed the automation's capabilities to handle 

the situation—and then control is transferred to people who 

have to take over when the situation is already quite difficult to 

handle, for example as the control surfaces reach the limit of 

their control authority (i.e., as they saturate).  This class of 

architectures virtually guarantees bumpy and late transfers of 

control that increase the risk of decompensation—inability of a 

joint human-machine control system to keep pace with growing 

or cascading demands [3]. In real cases of human supervision 

of automation based on this architecture, the bumpy and late 

transfers of control have contributed to actual accidents [2], 

[30]. This paper addresses the question: can shared flight 

control systems be designed to be more resilient than the 

standard approach? The paper specifies and demonstrates the 

performance of a new design for resilient shared flight control. 

The new architecture provides desired tracking performance as 

Anuradha Annaswamy is with Active Adaptive Control Lab, Department of 
Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 

MA, USA (e-mail: aanna@mit.edu). 

David Woods is with Cognitive Systems Engineering Laboratory, 
Department of Integrated Systems Engineering, Ohio State University 

Columbus, OH, (e-mail: woods2@osu.edu). 

 

 Amir B. Farjadian, Benjamin Thomsen, Anuradha M. Annaswamy, and David D. Woods 

A Shared Pilot-Autopilot Control Architecture 

for Resilient Flight 

F 

mailto:amirbf@mit.edu
mailto:thomsen@mit.edu
mailto:aanna@mit.edu
mailto:woods2@osu.edu


operational anomalies challenge the performance of the first 

stage automated controller and the second stage human pilot 

gets ‘engaged bumplessly’. 

The shared controller we propose combines an adaptive 

controller [5] with principles from cognitive engineering that 

studies how humans add resilience to complex systems [2-4]. 

This controller is based on two concepts in particular, Capacity 

for Maneuver (CfM), and Graceful Command Degradation 

(GCD). CfM is the system’s reserved capacity that will remain 

after the occurrence of an anomaly [3]. It is hypothesized that 

resiliency is rooted in and achieved via monitoring and 

regulation of the system’s CfM [4]. In an engineering context, 

viewing the actuator input power as the system’s capacity, and 

noting that a fundamental capacity limit exists in all actuators 

in the form of magnitude saturation, one can define a CfM as 

the distance between the control input and saturation limits. The 

need to avoid actuator saturation, and therefore increase CfM, 

becomes even more urgent in face of anomalies which may 

push the actuators to their limits. With such a definition, we will 

investigate in this paper if a resilient flight control system can 

be designed with the optimization of the CfM in mind. 

The second concept that we utilize is GCD. Since the 

underlying problem of interest is satisfactory tracking of 

commands, delivering the same command both pre- and post-

anomaly may not be feasible, especially if the anomalies cause 

a significant loss of actuator effectiveness. GCD is proposed as 

an inherent metric adopted by humans [2] that will allow the 

underlying system to function so as to retain a target CfM. In 

other words, a human may introduce a certain amount of GCD 

as a control variable, tuned in a way that permits a system to 

reach its targeted CfM. The control architecture that we propose 

in this paper makes use of such a strategy. With resilient control 

defined for the purposes of this paper as the procurement of the 

optimal CfM with minimal GCD while delivering high tracking 

performance, we will design the overall shared architecture so 

as to have the flight control system perform resiliently in the 

face of anomalies.  

The control architecture proposed in this paper consists of 

shared decision making between the human pilot and the 

adaptive autopilot. The presence of an anomaly imposes a 

number of difficult challenges, all of which have to be dealt 

with quickly and correctly. In order to meet these challenges, 

we contend that, both the human pilot and an advanced 

autopilot having adaptive and learning capability need to be 

utilized. In the shared architecture that is proposed in this paper, 

the human pilot will be allocated higher-level cognitive tasks 

such as a perception of the anomaly, and an estimate of 

allowable GCD that will ensure maximum CfM. The adaptive 

autopilot on the other hand will be tasked with carrying out fast 

inner-loop decisions such as adaptive articulation of control 

surfaces that will ensure command tracking in a stable manner. 
Adaptive control systems were created to control dynamic 

processes in the presence of uncertainties [5]. With successes 

reported in flight control, process control, and automotive 

control, adaptive control consists of a self-tuned computational 

mechanism that adapts to the uncertainties by allowing the 

control parameters to be adjusted so as to minimize a suitably 

constructed performance error. Since the problem that is 

addressed in this paper is flight control in the presence of 

uncertainties, using an autopilot that is based on an adaptive 

control principle is an apt solution, and forms an important 

component of our shared control architecture. The first part of 

the shared controller we propose consists of an adaptive 

controller similar to [6], [8], and [23]. 
The second part of the shared controller is a human-pilot 

action. A number of aircraft accidents have been reported in the 

literature (ex. US Airways 1549 [9], El Al 1862 [10], Delta Air 

Lines 1141 [11], Air Florida 90 [12]). During those 

unpredictable events pilots showed a fair amount of 

understanding of the ongoing anomalies. In these examples, 

pilots have perceived and reported a variety of failures such as 

losing thrust in both engines due to birds encounter (US 

Airways 1549), an engine fire followed by losing another 

engine (El Al 1862), an engine failure (Delta Air Lines 1141), 

and inadvertently stalling the aircraft (Air Florida 90). As a 

potential remedy to these types of events, we postulate that 

pilots perceive the presence of the anomalies within a certain 

reaction time [13], [42] and they transmit estimates of these 

failures to the autopilot. And as mentioned above, in addition to 

these estimates, we propose that the pilot also inputs an estimate 

of allowable GCD that can be tolerated in a given mission while 

ensuring that a CfM remains for safe performance in the future. 
In order to formally analyze flight control anomalies in 

closed-loop dynamics of a piloted aircraft, mathematical 

models of a human pilot behavior need to be considered. 

Detailed models of the pilot behavior, especially at frequencies 

where stable feedback action is most urgently needed, have 

been developed by McRuer [14] and Hess [15]-[17]. These 

models have been studied by Hess [16]-[17] to understand a 

pilot’s actions following significant anomalous events. Mulder 

et al., [41] examined the weaknesses in [14] and provide 

modifications based on studies of human pilots. The results of 

these papers are utilized in determining the pilot’s role in our 

proposed shared control architecture. 
Additional studies of experienced pilots when it comes to 

recognizing anomalies and modifying controller response have 

been carried out in [34-41]. In [34-38], Sarter and Woods 

conducted an extensive set of empirical studies with line pilots 

on actual advanced aircraft in full scope simulation studies. The 

results on human interaction with cockpit automation showed 

that flight crews are sensitive to anomalies especially when 

conditions do not match expectations (do not fit internal 

representations of expected aircraft behavior under automatic 

control in different flight contexts). These studies also show 

that flight crews’ ability to notice anomalies in automation 

behavior strongly depends on the design of cockpit displays, for 

example, tactile displays greatly increase the speed and 

reliability of anomaly recognition without interfering with other 

pilot tasks [39]. In [41] Mulder et al., point out that the 

capability of human controllers to recognize anomalies grows 

with experience “the Internal Representation  (IR), the quality 

of which increases with exposure and experience, that is the 

critical driver behind human control adaptations." (p. 472). A 

recent industry-wide review [40] drawing on diverse data 



sources supports the results from the full scope simulator 

studies. The results from the above studies are suitably 

integrated into our shared control architecture. 

The overall schematic of the control architecture proposed in 

this paper is shown in Fig. 1, which consists of perception and 

adaptation components. The perception component consists of 

both anomaly recognition and estimation. The adaptation 

component determines how the control input should be altered 

in the face of an anomaly. Such a shared task distribution 

between a human pilot and autopilot is similar to the distinction 

between actions in the face of abnormal as opposed to 

unexpected conditions [2], [18]. Anomalies could cause 

discrepancies between what is observed and what is expected 

(i.e. unexpected), or discrepancies between observed and 

desired states (i.e. abnormal). While the abnormal conditions 

may be addressable by simply including an advanced autopilot, 

the unexpected discrepancies are far more complex and requires 

elaborate decision-making such as findings-to-be-explained or 

diagnostic reasoning followed by quick corrective actions [2]. 

Our focus in this paper is on the case of unexpected conditions 

as we propose a shared pilot-autopilot decision making 

architecture. Similar task distributions have been reported in 

our earlier papers, [19]-[20].  

 
Fig. 1.  Shared flight control architecture composed of pilot and autopilot.  

 

The specific adaptive autopilot that we use combines the 

architecture from [8] and [21]-[23]. The advantage of the 

former is the ability to gracefully degrade the command 

tracking requirement to retain sufficient CfM and prevent 

actuator saturation. The advantage of the latter is to ensure a 

smooth tracking performance even with constraints on the 

control effort. By combining suitable elements of these two 

control solutions we will show that when anomalies occur, and 

following the pilot input, the adaptive controller determines a 

control solution that not only guarantees bounded solutions but 

also minimizes the command tracking error. 
The rest of the paper is organized as follows. The problem 

statement is given in Section II. The shared control architecture 

is described in Section III. Extensive numerical studies are 

carried out using both a high-fidelity nonlinear model of an F-

16 aircraft and a linear model of an F-8 aircraft in Section IV. 

For the F-16, we compare the proposed architecture with other 

non-shared control solutions based on only autopilots, which 

include a standard optimal control approach as in [24], and an 

adaptive control approach using multiple inputs as in [7]. For 

F-8, we compared the proposed controller with a fault-tolerant 

controller. The anomalies considered are successive losses of 

actuator effectiveness. Using several performance metrics 

related to CfM and GCD, we demonstrate that a shared 

controller out-performs all other controllers. Summary and 

conclusions are provided in Section V. 

II. THE SHARED CONTROLLER 

The model of the aircraft to be controlled is assumed to have 

the dynamics: 

 

                 𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵Λ𝑓𝑢(𝑡) + 𝑑 + Φ𝑇𝑓(𝑥)            (1) 

 

where 𝑥 ∈ 𝑅𝑛 and 𝑢 ∈ 𝑅𝑚 are deviations around a trim 

condition in aircraft states and control input, respectively,  𝑑 

represents uncertainties associated with the trim condition, and 

the last term Φ𝑇𝑓(𝑥) represents higher order effects due to 

nonlinearities. 𝐴 is a (𝑛 ×  𝑛) system matrix and 𝐵 is a (𝑛 ×
 𝑚) input matrix, both of which are assumed to be known, with 

(𝐴, 𝐵) controllable, and Λ𝑓 is a diagonal matrix that reflects a 

possible actuator anomaly with unknown positive entries 𝜆𝑓𝑖
. It 

is assumed that the anomalies occur at time 𝑡𝑎, so that  𝜆𝑓𝑖
= 1 

for 0 ≤ 𝑡 < 𝑡𝑎, and 𝜆𝑓𝑖
switches to a value that lies between 0 

and 1 for 𝑡 > 𝑡𝑎. Finally it is assumed that the higher order 

effects are such that 𝑓(𝑥) is a known vector that can be 

determined at each instant of time, while Φ𝑇 is an unknown 

vector parameter. Such a dynamic model is often used in flight 

control problems [25]. 

The goal is to choose the control input 𝑢 so that the plant state 

𝑥 follow the desired command, which is suitably altered so as 

to account for the presence of anomalies. The control input 𝑢 is 

assumed to be position / amplitude limited and modelled as 

follows: 

 𝑢𝑖(𝑡) = 𝑢𝑚𝑎𝑥𝑖
𝑠𝑎𝑡 (

𝑢𝑐𝑖
(𝑡)

𝑢𝑚𝑎𝑥𝑖

) = {
𝑢𝑐𝑖

(𝑡),                                  |𝑢𝑐𝑖
(𝑡)| ≤ 𝑢𝑚𝑎𝑥𝑖

𝑢𝑚𝑎𝑥𝑖
(𝑡)𝑠𝑔𝑛 (𝑢𝑐𝑖

(𝑡)),    |𝑢𝑐𝑖
(𝑡)| > 𝑢𝑚𝑎𝑥𝑖

  (2) 

 

where 𝑢𝑚𝑎𝑥𝑖
 for 𝑖 = 1, … , 𝑚 are the physical amplitude limits 

of actuator i, and 𝑢𝑐𝑖
(𝑡) are the control inputs to be determined 

by the shared control architecture. The functions 𝑠𝑎𝑡(⋅) and 

𝑠𝑔𝑛(⋅) denote saturation and sign functions, respectively. 

Our proposed shared control architecture consists of the 

human pilot and adaptive autopilot (Fig. 1) providing 

perception and adaptation in response to actuator anomalies. 

The details of each control unit are provided in the following 

sections. 

A. Autopilot: μ-mod adaptive control  

To specify the adaptive controller, a reference model that 

specifies the commanded behavior from the plant is constructed 

and is of the form [5] 

 

                           𝑥̇𝑚(𝑡) = 𝐴𝑚𝑥𝑚(𝑡) + 𝐵𝑚𝑟0(𝑡)                    (3) 

 

where 𝑟0 ∈ 𝑅𝑘 is a reference input, 𝐴𝑚(𝑛 ×  𝑛) is a Hurwitz 

matrix,  𝑥𝑚 ∈ 𝑅𝑛 is the state of the reference model and 

(𝐴𝑚,𝐵𝑚) is controllable. The goal of the adaptive autopilot is 

then to choose 𝑢𝑐𝑖
(𝑡) in (5) so that if an error e is defined as                                 

 

 𝑒(𝑡) = 𝑥(𝑡) − 𝑥𝑚(𝑡)                              (4)  

 



all signals in the adaptive system remain bounded with 

error 𝑒(𝑡) tending to zero asymptotically.  

The design of adaptive controllers in the presence of control 

magnitude constraints was first addressed in [6], with 

guarantees of closed-loop stability through modification of the 

error used for the adaptive law. The same problem was 

addressed in [8], using an approach termed “μ-mod adaptive 

control” where the effect of input saturation was accommodated 

through the addition of another term in the reference model. Yet 

another approach based on a closed-loop reference model 

(CRM) was derived in [21-23] in order to improve the transient 

performance of the adaptive controller. The autopilot we 

propose in this paper is based on both the μ-mod and CRM 

approaches. Compactly, this controller is summarized in the 

following equations. The control input is modified from (2) as 

 

𝑢𝑐𝑖
(𝑡) = {

𝑢𝑎𝑑𝑖
(𝑡),                                                               |𝑢𝑎𝑑𝑖

(𝑡)| ≤ 𝑢𝑚𝑎𝑥𝑖

𝛿

1

1+𝜇
(𝑢𝑎𝑑𝑖

(𝑡) + 𝜇 𝑠𝑔𝑛 (𝑢𝑎𝑑𝑖
(𝑡)) 𝑢𝑚𝑎𝑥𝑖

𝛿 ),    |𝑢𝑎𝑑𝑖
(𝑡)| > 𝑢𝑚𝑎𝑥𝑖

𝛿
     (5) 

 

where  

 

 𝑢𝑎𝑑𝑖
(𝑡) = 𝐾𝑥

𝑇(𝑡)𝑥(𝑡) + 𝐾𝑟
𝑇(𝑡)𝑟0(𝑡) + d̂(𝑡) + Φ̂𝑇(𝑡)𝑓(𝑥)   (6)  

                      𝑢𝑚𝑎𝑥𝑖
𝛿 = (1 − 𝛿)𝑢𝑚𝑎𝑥𝑖

 , 0 ≤ 𝛿 < 1                 (7) 

 

Eq. (7) and Eq. (5) imply that there is a buffer region [(1 −
𝛿)𝑢𝑚𝑎𝑥𝑖

, 𝑢𝑚𝑎𝑥𝑖
)] and the choice of μ allows the input to be 

scaled somewhere in between. The reference model is also 

modified as: 

 

     𝑥̇𝑚(𝑡) = 𝐴𝑚𝑥𝑚(𝑡) + 𝐵𝑚(𝑟0(𝑡) + 𝐾𝑢
𝑇(𝑡)∆𝑢𝑎𝑑(𝑡)) − 𝐿𝑒(𝑡)       (8) 

  ∆𝑢𝑎𝑑𝑖
(𝑡) = 𝑢𝑚𝑎𝑥𝑖

𝑠𝑎𝑡 (
𝑢𝑐𝑖

(𝑡)

𝑢𝑚𝑎𝑥𝑖

) − 𝑢𝑎𝑑𝑖
(𝑡)             (9) 

 

and 𝐿 < 0 is a constant or a matrix selected such that (Am + L) 

is Hurwitz. Finally, the adaptive parameters are adjusted as 

 

                           𝐾𝑥̇(𝑡) = −Γ𝑥𝑥(𝑡)𝑒𝑇(𝑡)𝑃𝐵                        (10)  

                           𝐾𝑟̇(𝑡) = −Γ𝑟r0(𝑡)𝑒𝑇(𝑡)𝑃𝐵  

𝑑̇̂(𝑡) = −Γ𝑑𝑒𝑇(𝑡)𝑃𝐵  

Φ̇̂(𝑡) = −Γ𝑓𝑓(𝑥(𝑡))𝑒𝑇(𝑡)𝑃𝐵 

                               𝐾𝑢̇(𝑡) = Γ𝑢∆𝑢𝑎𝑑𝑒𝑇(𝑡)𝑃𝐵𝑚  

 

where 𝑃 = 𝑃𝑇 is a solution of the Lyapunov equation (for 𝑄 >
0)  
 𝐴𝑚

𝑇 𝑃 + 𝑃𝐴𝑚 = −𝑄                             (11)  

 

with Γ𝑥 = Γ𝑥
𝑇 > 0, Γ𝑟 = Γ𝑟

𝑇 > 0, Γ𝑢 = Γ𝑢
𝑇 > 0.  

 

Reference [8] has established stability of the overall adaptive 

system specified by equations (1)-(10) when L = 0. Reference 

[23] has established stability of the adaptive system when no 

saturation inputs are present. A very straight forward 

combination of the two proofs can be easily carried out to prove 

that when L < 0 the adaptive system considered in this paper 

has (i) globally bounded solutions if the plant in (1) is open-

loop stable, and (ii) bounded solutions for an arbitrary plant if 

all initial conditions of and the control parameters in (10) lie in 

a compact set. We skip this proof due to page limitations. 

The adaptive autopilot in (2), (4)-(11) provides the required 

control input in (1) as a solution to the underlying problem. The 

autopilot includes several free parameters including μ in (5), δ 

in (7), the reference model parameters 𝐴𝑚, 𝐵𝑚, 𝐿 in (8) and the 

control parameters 𝐾𝑥(0), 𝐾𝑟(0), 𝐾𝑢(0), 𝑑̇(0), Φ̇̂(0) in (10). 

The choice of δ sets the desired CfM and the choice of μ has a 

proportional effect on CfM and GCD as discussed in Section 

A.1. The choice of the remaining parameters is discussed in 

A.2. 

 

A.1 Quantification of CfM, GCD and Trade-offs 

The idea behind the choice of control input as in (5) is to 

introduce two parameters 𝛿 and μ, both of which help tune the 

control input with respect to its specified magnitude limit 

𝑢𝑚𝑎𝑥𝑖
. These two parameters will be shown to be useful in 

quantifying CfM, GCD, and the tradeoffs between them. 

 

CfM: We first define a desired target for Capacity for Maneuver 

for the overall aircraft as  

 

                   𝐶𝑓𝑀𝑑 = max
𝑖

(𝑢𝑚𝑎𝑥𝑖
− 𝑢𝑚𝑎𝑥𝑖

𝛿 )                            (12)  

 

and the actual capacity for maneuver as  

 

                       𝐶𝑓𝑀 = 𝐶𝑓𝑀+/𝐶𝑓𝑀𝑑                                 (13) 

 

where  

𝐶𝑓𝑀+ = 𝑟𝑚𝑠 (𝑚𝑖𝑛
𝑖

 (𝑐𝑖(𝑡)))|
𝑡𝑎

𝑇

      (14.a) 

                      𝑐𝑖(𝑡) = 𝑢𝑚𝑎𝑥𝑖
− |𝑢𝑖(𝑡)|                        (14.b)    

                     

min and max are the minimum and maximum operators over the 

ith index, rms is the root mean square operator defined in (31), 

and 𝑡𝑎 and T refer to the time of anomaly and final time, 

respectively. From Eq. (14), we note that 𝐶𝑓𝑀+ has a maximum 

value 𝑢𝑚𝑎𝑥 for the trivial case when all 𝑢𝑖(𝑡) = 0, a value close 

to 𝛿𝑢𝑚𝑎𝑥 if the control inputs approach the buffer region, and 

zero if 𝑢𝑖(𝑡) hits the saturation limit 𝑢𝑚𝑎𝑥. Since 𝐶𝑓𝑀𝑑 =
𝛿𝑢𝑚𝑎𝑥, it then follows that CfM, the corresponding normalized 

value, is greater than unity when the control inputs are small 

and far away from saturation, unity as they approach the buffer 

region, and zero when fully saturated. 

 

GCD: As mentioned earlier, the reference model represents the 

commanded behavior from the plant being controlled.  In order 

to reflect the fact that the actual output may be compromised if 

the input is constrained, we have added a term that depends on 

∆𝑢𝑎𝑑(𝑡), which can be seen from (9) to become nonzero 

whenever the control input saturates. That is, when the control 

input approaches the saturation limit, ∆𝑢𝑎𝑑𝑖
 becomes nonzero, 

thereby suitably allowing a graceful degradation of 𝑥𝑚 from its 

nominal choice as in (8). We denote this degradation as GCD 

and quantify it as: 



 

      𝐺𝐶𝐷 = 𝑟𝑚𝑠(𝑥𝑚(𝑡) − 𝑟0(𝑡))/𝑟𝑚𝑠(𝑟0(𝑡)),   𝑡 ∈ 𝑇0      (15) 

 

where 𝑇0 denotes the interval of interest. It should be noted that 

once μ is specified, the adaptive controller automatically scales 

the input into the reference model through ∆𝑢𝑎𝑑 and 𝐾𝑢, in a 

way so that 𝑒(𝑡) remains small and the closed-loop system has 

bounded solutions. 

 

μ: As can be seen from (5), the purpose of μ is to move the 

control input away from saturation when needed. For example, 

if |𝑢𝑎𝑑𝑖
(𝑡)| > 𝑢𝑚𝑎𝑥𝑖

𝛿 , the extreme case of μ = 0 will simply set 

𝑢𝑐𝑖
= 𝑢𝑎𝑑𝑖

, thereby removing the effect of the virtual limit 

imposed in (7). As 𝜇 increases, the control input would decrease 

in magnitude and move towards the virtual saturation limit 

𝑢𝑚𝑎𝑥𝑖
𝛿 . That is, once the buffer 𝛿  is determined, 𝜇 controls 𝑢𝑖(𝑡) 

within the buffer region [(1 − 𝛿)𝑢𝑚𝑎𝑥𝑖
, 𝑢𝑚𝑎𝑥𝑖

], bringing it 

closer to the lower limit with increasing μ. That is, as μ 

increases, CfM increases as well in the buffer region. 

  It is easy to see from (8) and (9) that similar to CfM, as μ 

increases, GCD increases as well. This is due to the fact that an 

increase in μ increases ∆𝑢𝑎𝑑𝑖
(𝑡) which in turn increases the 

GCD. While a larger CfM improves the responsiveness of the 

system to future anomalies, a lower bound on the reference 

command is necessary to finish the mission within practical 

constraints. That is, μ needs to be chosen so that GCD remains 

above a lower limit while maintaining a large CfM. As a result, 

selecting μ is a critical tradeoff in a resilient control system 

design. In this work, we define resiliency as the system’s ability 

to trade-off CfM with GCD so as to deliver the same tracking 

performance both before and after the occurrence of an 

anomaly.  And we relegate the task of selecting the appropriate 

μ to the human pilot. 

 

A.2 Choice of the Reference Model Parameters 

In addition to μ and 𝛿, the adaptive controller in (4)-(14) 

requires the reference model parameters 𝐴𝑚, 𝐵𝑚 , 𝐿 and the 

control parameters 𝐾𝑥(0), 𝐾𝑟(0), and 𝐾𝑢(0) at time 𝑡 = 0. If no 

anomalies are present, then 𝛬𝑛𝑜𝑚 = 𝛬𝑓 = 𝐼 which implies that 

𝐴𝑚 and 𝐵𝑚 as well as the control parameters can be chosen as 

 

                                  𝐴𝑚 = 𝐴 + 𝐵𝐾𝑥
𝑇(0)                            (16) 

                                𝐾𝑟
𝑇(0) = −(𝐴𝑚

−1𝐵)−1 

                                    𝐵𝑚 = 𝐵𝐾𝑟
𝑇(0) 

                                  𝐾𝑢
𝑇(0) = −𝐴𝑚

−1𝐵 
 

where 𝐾𝑥(0) is computed using a linear–quadratic regulator 

(LQR) method and the nominal plant parameters (𝐴, 𝐵) [24], 

and 𝐾𝑟(0) is selected as in (16) to provide unity low frequency 

DC gain for the closed-loop system. When anomalies Λ𝑓 occur 

at time 𝑡 = 𝑡𝑎, suppose an estimate 𝛬̂𝑓 is available, a similar 

choice as in (16) can be carried out using the plant parameters 

(𝐴, 𝐵𝛬̂𝑓) and the relations 

 

                               𝐴𝑚 = 𝐴 + 𝐵𝛬̂𝑓𝐾𝑥
𝑇(𝑡𝑎)                          (17) 

                               𝐾𝑟
𝑇(𝑡𝑎) = −(𝐴𝑚

−1𝐵𝛬̂𝑓(𝑡𝑎))−1 

                               𝐵𝑚 = 𝐵𝛬̂𝑓𝐾𝑟
𝑇(𝑡𝑎) 

                               𝐾𝑢
𝑇(𝑡𝑎) = −𝐴𝑚

−1𝐵𝛬̂𝑓(𝑡𝑎) 

 

with the adaptive controller specified using (2), (4)-(14) for all 

𝑡 ≥ 𝑡a, L is chosen as in [23], and lower parameters 𝑑̂(0), Φ̂(0) 

are chosen arbitrarily. Similar to μ, we relegate the task of 

assessing the estimate 𝛬̂𝑓 to the human pilot as well. 

 

 
 
Fig. 2.  The closed–loop shared controller: Pilot/autopilot task contribution. 

 

B. Human pilot: CfM-GCD Trade-off & anomaly estimation 

Figure 2 shows the summary interaction between human pilot 

and autopilot via GCD, CfM, μ. Upon occurrence of an 

anomaly, the pilot is the first responder to notice and perceive 

the malfunction through sensory interaction with the aircraft via 

pilot control interfaces, such as stick or a wheel, rudder pedals, 

as well control indicators / gages in the cockpit displays. Based 

on this premise, we postulate that the pilot plays a critical 

supervisory role to take care of unexpected conditions. In 

particular, we relegate the actions of (a) CfM-GCD trade-off, 

and (b) anomaly estimation, to the human pilot (see Fig. 2). 

These actions may be performed by the pilot as follows:  

 

1) CfM-GCD Trade-off (setting μ) 

As a first step towards realizing a desired CfM, it is assumed 

that the pilot monitors the actual CfM, which is defined as 

in (13). This may be made possible through a display 

interface in the cockpit through the monitoring of actuator 

utilization [18]. While (13) may be one measure of CfM, 

alternate metrics based on the peak value of 𝑢(𝑡) or an 

average value over a certain time, or a normalized entity 

with respect to each actuator may be used as well.  

When an anomaly occurs, an increased CfM may be 

obtainable only at the expense of a degradation of the 

trackable command. As was argued in the previous section, 

μ is a compact parameter that directly impacts both CfM and 

GCD. We assume that the pilot is capable of determining 

the optimal mu which corresponds to the maximum CfM 

that can be achieved with a minimum GCD. We therefore 

propose that with such expertise, the pilot determines the 

optimal μ and enters the parameter for the adaptive autopilot 

to use.  

2) Anomaly Estimation (𝛬̂𝑓𝑝
) 

The second task that we assign to the pilot is one of anomaly 

estimation. Noting that the anomaly, which is assumed to 



result in a loss of control effectiveness, is represented by 𝛬𝑓 

in (1), we assume that pilot provides an estimate 𝛬̂𝑓𝑝
 (of 𝛬𝑓).  

In summary, the pilot is tasked with providing two pieces of 

information to the shared controller, μ and Λ̂fp
 (see Figure 

2 for a schematic). The former provides the requisite GCD 

that allows the overall system to retain the desired CfM. The 

latter is a diagnosis of the anomaly as perceived by the pilot.  

 

B.1 Interface with the Autopilot 

Of the two parameters that the pilot provides, μ is directly 

used in (5), while 𝛬̂𝑓𝑝
 is utilized by the adaptive autopilot in the 

following manner. Since in general the expertise of the pilot 

may vary, we introduce a new parameter 𝜂  with 0 < 𝜂 ≤ 1 and 

is calculated based on the pilot’s expertise, as a function of 

flying hours [26, 32-33]. One choice of 𝜂 is given by 

 

                                     𝜂 = 𝑓(𝐹𝐻)                                      (18) 

 

where FH stands for hours of flight in the past 6 months and f(.) 

normalizes hours to eta. With this pilot-rating, we assume that 

an estimate 𝛬̂𝑓 of 𝛬𝑓 is used in Eq. (19) as 

 

                              𝛬̂𝑓 = 𝜂𝛬̂𝑓𝑝
+ (1 − 𝜂)𝛬𝑛𝑜𝑚                     (19) 

 

where 𝛬𝑛𝑜𝑚=I. 

 

C. The Shared Controller 

The overall shared controller is specified by equation (2), (4)-

(14), (17)-(19), with the human pilot specifying two parameters  

μ and 𝛬̂𝑓𝑝
 to the autopilot. The pilot is assumed to first detect 

the presence of an anomaly, and then provide these parameters 

to the adaptive autopilot. The adaptive autopilot then uses these 

two pieces of information and automatically determines (i) the 

trackable command, in the form of the reference model state xm, 

and (ii) the control input u that ensures that the plant state x 

tracks xm. As will be shown numerically in Section IV, the 

choice of μ leads to a good tradeoff between CfM and GCD, 

with a satisfactory tracking performance.  

III. COMPARISON WITH OTHER CONTROLLERS 

To evaluate the performance characteristics of the shared 

controller, we compare our proposed method with conventional 

adaptive [7] and optimal controllers [24], as shown in Fig. 3. 

A. Adaptive Autopilot  

The adaptive controller is adopted from [7], where the f term, 

associated with the actuator’s locking, is omitted due to in-

applicability in the problem definition. Assuming the control 

input to the plant as in (2), the control input by the adaptive 

autopilot can be described as: 

 

                     𝑢𝑐𝑖
(𝑡) = 𝐾𝑥(𝑡)𝑥(𝑡) + 𝐾𝑟(𝑡)𝑟0(𝑡)                   (20)  

 

The adaptive parameters 𝐾𝑥(𝑡), 𝐾𝑟(𝑡) and 𝜆̂(𝑡) are adjusted as: 

 

                             𝐾𝑥̇(𝑡) = −Γ𝑥𝐵𝑇𝑃𝑒𝑢𝑥𝑇                            (21)  

                             𝐾𝑟̇(𝑡) = −Γ𝑟𝐵𝑇𝑃𝑒𝑢𝑟0
𝑇   

                                 λ̇̂(𝑡) = Γ𝜆𝑑𝑖𝑎𝑔(∆u)𝐵𝑇𝑃𝑒𝑢 

where 𝑃 = 𝑃𝑇 is a solution of the Lyapunov equation (for 𝑄 >
0) 

                                𝐴𝑚
𝑇 𝑃 + 𝑃𝐴𝑚 = −𝑄                              (22) 

 

Γ𝑥 = Γ𝑥
𝑇 > 0, Γ𝑟 = Γ𝑟

𝑇 > 0, Γ𝜆 = Γ𝜆
𝑇 > 0, and ∆𝑢(𝑡) represents 

the control deficiency signal: 

 

                                      ∆𝑢 = 𝑢𝑖 − 𝑢𝑐𝑖
                                (23) 

 

and 𝑒u is the augmented error computed from the auxiliary error 

𝑒Δ as follows: 

 

                                     𝑒u = 𝑒 − 𝑒Δ                                     (24) 

                        𝑒Δ̇ = 𝐴𝑚𝑒Δ + 𝐵 𝑑𝑖𝑎𝑔(λ̂)∆𝑢                         (25) 

 

The parameter λ̂ is a vector, the elements of which are the 

current estimates of the diagonal terms of 𝛬𝑓 in (1). 

The adaptation laws in (21) are initialized using a baseline 

LQR control law, similar to (16). The LQR method is applied 

to calculate 𝐾𝑥(0) using A and 𝐵, and the feed-forward gain 

(𝐾𝑟) is initialized to achieve unity DC gain in the closed-loop 

system. 

                                𝐴𝑚 = 𝐴 + 𝐵𝐾𝑥
𝑇(0)                              (26) 

                               𝐾𝑟
𝑇(0) = −(𝐴𝑚

−1𝐵)−1 

                            𝐵𝑚 = 𝐵𝐾𝑟
𝑇(0) 

 

The primary goal of the adaptive autopilot is to minimize the 

tracking error in normal and anomaly conditions. 

 

 
 

Fig. 3.  Different approaches applied to the flight control under anomaly, Top: 

proposed shared controller, Bottom: Optimal/adaptive/µ-mod adaptive 

autopilots.  

 



B. Optimal Control 

The optimal controller is formulated using a conventional 

LQR technique [24]. Considering (2), the optimal control input 

is generated as:  

 

                            𝑢𝑐𝑖
(𝑡) = 𝐾𝑥𝑥(𝑡) + 𝐾𝑟𝑟0(𝑡)                      (27)  

 

The control gains (𝐾𝑥, 𝐾𝑟) are fixed and chosen similar to the 

initialization in (16) and (26). The LQR method is applied to 

calculate (𝐾𝑥(0) = 𝐾𝑥𝐿𝑄𝑅
) using A and 𝐵 matrices (𝛬𝑓 = 𝐼). 

The feedforward gain (𝐾𝑟) is initialized to achieve unity DC 

gain in the closed-loop system as follows: 

 

                              𝐴𝑚 = 𝐴 + 𝐵𝐾𝑥
𝑇(0)                                (28) 

                             𝐾𝑟
𝑇(0) = −(𝐴𝑚

−1𝐵)−1 

                              𝐵𝑚 = 𝐵𝐾𝑟
𝑇(0) 

 

The primary goal of the optimal autopilot is to minimize the 

tracking error under normal and anomaly conditions. 

 

C. Situation Awareness of Pilots 

Pilots will have disparate levels of cognitive awareness of the 

anomalous situation, where they may be either situation-aware 

or situation-unaware. We quantify these differences in the 

following manner, based on μ. Additionally, we associate a 

CfM metric to the human pilot and based on his/her reaction 

time. Our premise is that a situation-unaware pilot (SUP) has a 

longer reaction time (RT) compared to a situation-aware pilot 

(SAP), and hence a lower CfM [13]. These models will be 

included in our numerical studies as follows. 

1) Situation Aware Pilot (SAP) 

The pilot has a high situation awareness, a small RT, and 

therefore can compute μ with a delay of RT. Moreover, 

he/she can perceive the anomaly as 𝛬̂𝑓𝑝
 leading to an 

estimate as in (17). This will be used in (19) to re-initialize 

the parameters in the reference model and controller gains 

in the adaptive autopilot. 

2) Situation Unaware Pilot (SUP) 

In contrast to the SAP, the SUP is cognitively saturated and 

slow to respond, and possesses a large RT. He/she is 

therefore assumed to not be able to provide an anomaly 

estimate 𝛬̂𝑓𝑝
. It is assumed that the pilot is capable of 

providing a μ after a large delay of RT. In the absence of 

pilot’s anomaly estimate, the adaptive autopilot pursues the 

anomaly estimation process, which may exhibit poor 

performance. 
TABLE I 

THE OPEN-LOOP SYSTEM MODEL PARAMETERS. 

A B 

0 500 0 500 0

0 0 0 0 1

0.0001 32.17 0.013 2.948 1.028

0 0 0.003 0.751 0.928

0 0 0 1.837 1.027

 
 
 
    
 

  
   

 

0 0

0 0

0.102 0.002

0.002 0

0.134 0

 
 
 
 
 
 

  
 

IV. NUMERICAL ASSESSMENT 

A. Simulation Example 

The control systems have been simulated in the flight control 

problem of the nonlinear longitudinal dynamics of an F-16 

aircraft model. The nonlinear model with two inputs and two 

outputs is considered, where the plant state 𝑥𝑙𝑜𝑛𝑔 =

[ℎ, 𝜃, 𝑉, 𝛼, 𝑞]𝑇 contains the altitude, pitch angle, airspeed, angle 

of attack, and pitch rate, respectively. The plant input is 𝑢 =

[𝛿𝑒𝑙  𝛿𝑡ℎ]𝑇 which are the elevator deflection and thrust force 

relative to trim, respectively. Table 1 gives the linearized 

system matrices at ℎ0 = 10000 𝑓𝑡 and 𝑉0 = 500 𝑓𝑡/𝑠. For 

ease of exposition, the trim disturbance d and nonlinear 

parameter Φ were set to zeros. The corresponding adaptive laws 

for 𝑑̂ and Φ̂ in (10) were set to zero as well. 

The control objective is to track step-wise commands in 

altitude (∆ℎ = 80 ft) while regulating airspeed (∆𝑉 = 0). To 

ensure zero steady-state command tracking error, the control 

model augments the plant state with the integral of the altitude 

command tracking error, 

 

                 ℎ𝐼(𝑡) =  ∫ [ℎ(𝜏) − ℎ𝑐𝑚𝑑(𝜏)]𝑑𝜏
𝑡

0
                        (29)  

 

where ℎ𝑐𝑚𝑑(𝜏) is the commanded altitude. The plant state used 

in simulation is thus 𝑥𝑙𝑜𝑛𝑔 = [ℎ𝐼 , ℎ, 𝜃, 𝑉, 𝛼, 𝑞]𝑇. Two 

consecutive faults were introduced at 125 s and 215 s, resulting 

in post-anomaly actuator effectiveness of 30% and 10%, 

respectively. That is, it is assumed that both the elevator 

deflection and thrust inputs were compromised with the 

corresponding 2x2 matrix 𝛬𝑓 containing equal diagonal entries 

𝜆𝑓 with (see Figure 4). 

 
Fig 4. Timeline of flight scenario used in simulations. 

 

                     𝜆𝑓 = {
1                  𝑡 < 125 𝑠

0.3    215 > 𝑡 ≥ 125 𝑠
0.1               𝑡 ≥ 215 𝑠

                         (30) 

 

In addition, it was assumed that the anomaly causes the 

deflection of the elevator to be limited. The elevator’s 

saturation limits (𝑢𝑚𝑎𝑥𝑖
) were set to 3 deg, and the thrust 

saturation limit to 1500 lbs above the nominal value associated 

with the steady-state trim condition. Inspired by [42], we 

assumed a reaction time of RT = 0.68 s for SAP and RT = 5 s 

for SUP in the shared controller. Additionally we assumed δ = 

0.25 to specify the desired value for CfM in (12). All LQR 

designs in (17), (26) and (28) were computed using the state and 

input cost matrices (Q and R) given by  

 

𝑄 = 𝑑𝑖𝑎𝑔(0.01, 0.01, 1, 10, 1, 1) 



𝑅 = 𝑑𝑖𝑎𝑔(1, 1) 

 

B. Performance Metrics 

To evaluate the control performance, the root mean squared 

error was used as follows: 

                                         

𝑟𝑚𝑠(𝑥)|0
𝑇 =  (

1

𝑇
∫ ||𝑥(𝜏)||2𝑑𝜏

𝑇

0
)

1

2
, 𝑇 > 0               (31) 

 

where T is the integration period and ||.|| denotes the Euclidean 

norm. With these definitions, we chose four different metrics to 

assess the controllers’ performance in the above example of 

command tracking in height (h) and velocity (V).  

 

1) Tracking performance (𝜌) 

The command following characteristic, or change in root 

mean squared error (RMSE) before and after the first 

anomaly in each output state.  

 

  𝑅𝑀𝑆𝐸𝑖
− =  𝑟𝑚𝑠(𝑒𝑖)|

0

𝑡𝑎1                 (32) 

𝑅𝑀𝑆𝐸𝑖
+ =  𝑟𝑚𝑠(𝑒𝑖)|𝑡𝑎1

𝑇𝑒𝑛𝑑 

                             𝜌𝑖 =  𝑅𝑀𝑆𝐸𝑖
+ − 𝑅𝑀𝑆𝐸𝑖

−                         (33) 

 

where 𝑖 = ℎ, 𝑣, 𝑒ℎ ft, 𝑒𝑉 ft/s are altitude and velocity 

tracking errors, 𝑅𝑀𝑆𝐸− is the root mean square error before 

the first anomaly and 𝑅𝑀𝑆𝐸+ is computed after the first 

anomaly to the end of simulation Tend, 𝑡𝑎𝑖
, 𝑖 = 1,2 refers to 

first and second anomalies. 

 

2) CfM Metric  

Using (12)-(14), the existing CfM with respect to the 

desired CfM (CfMd) is computed, where 𝑢𝑚𝑎𝑥𝑖
 is the 

actuator saturation limit, with 𝑖 = 𝑒𝑙, 𝑡ℎ. 

 

3) Graceful Command Degradation (GCD) 

Using (15), and in this particular example, GCD is defined 

as follows: 

  

𝐺𝐶𝐷ℎ =  𝑟𝑚𝑠(ℎ𝑚(𝑡) − ℎ0(𝑡))/𝑟𝑚𝑠(ℎ0(𝑡)),   𝑡 ∈ 𝑇0 

𝐺𝐶𝐷𝑉 =  𝑟𝑚𝑠(𝑉𝑚(𝑡) − 𝑉0(𝑡))/𝑟𝑚𝑠(𝑉0(𝑡)),   𝑡 ∈ 𝑇0 

                       𝐺𝐶𝐷 = (𝐺𝐶𝐷𝑉 + 𝐺𝐶𝐷ℎ)/2 − 1                   (34) 

 

where the rms function is defined in (31), and interval T0 

was chosen to cover the last cycle [390 s, 510 s]. The 

proposed GCD metric as in (34) presents a normalized 

scalar indicating the cumulative percentage of command 

degradation along both output states. Since transients may 

diminish with time, and (8) includes a feedback of the state 

error 𝑒(𝑡), a choice of T0 when e is small ensures that the 

term in (15) represents a reasonable measure of GCD. 

 

4) Parameter Estimation Error 

After anomaly, the pilot may deliver an estimate (𝛬̂𝑓𝑝
) 

which results in a parameter estimate (𝛬̂𝑓) as in (19) 

 

                        ∆Λ𝑓 = ‖𝑑𝑖𝑎𝑔(Λ𝑓 − 𝛬̂𝑓)‖                             (35) 

 

where diag extracts the diagonal elements of the matrix 

argument, ∆Λ𝑓 is the Euclidean norm of parameter estimation 

error, Λ𝑓 is the actual failure repressing the system and 𝛬̂𝑓is the 

estimate computed from the pilot input in (19). Substituting 

(19) into (35), the following can be derived to relate the pilot’s 

estimation error to the initial parameter estimation error. 

 

   ∆Λ𝑓 = ‖𝑑𝑖𝑎𝑔(𝜂 (Λ𝑓 − 𝛬̂𝑓𝑝
) + (1 − 𝜂)(Λ𝑓 − Λ𝑛𝑜𝑚))‖  (36) 

 

where 𝛬̂𝑓𝑝
is the pilot’s input estimate, and 𝜂 is the pilot’s 

expertise from (16). The term Λ𝑓 − 𝛬̂𝑓𝑝
can be considered as 

pilot’s estimation error (∆Λ𝑓𝑝
). 

C. Results and Discussion 

The plant dynamics and control input were considered as in 

(1)-(2). The shared controller was simulated using (4)-(14), µ-

mod adaptive autopilot using (4)-(11), adaptive autopilot using 

(20)-(26) and optimal autopilot using (27)-(28). The simulation 

scenario as in Fig. 4 was used, where there is a 70% loss of 

actuator effectiveness followed by a second anomaly. 

Depending on the metric of interest, the second anomaly was 

assumed to be fixed at 10% or varied in a range 10% ≤ 𝜆𝑓𝑖
≤

30%. The shared controller as well as the adaptive and optimal 

controllers described in Section II and III were assessed using 

the metrics in (13), (15), (33), (34) and (36). The role of pilots, 

capacity for maneuver (CfM) and graceful command 

degradation (GCD) were quantified corresponding cases.  

 
TABLE II 

SUMMARY COMPARISON AMONG DIFFERENT CONTROLLERS. 

# Method 𝑅𝑀𝑆𝐸(ℎ,𝑣)
−  𝜌(ℎ,𝑣) CfM GCD 

1 SUP (14e-4, 43e-4) (56e-4, 31e-3) 1.01 84e-4 

2 SAP** (14e-4, 43e-4) (33e-4, 19e-3) 1.08 55e-4 

3 SAP***  (14e-4, 43e-4) (0.1, 0.2) 0.74 0.01 

4 Optimal  (20.88, 3.88) (233.8, 14.10) 0.74 NA* 

5 Adaptive  (21.39, 3.86) (0.98, 1.59) 1.17 NA 

6 μ-mod  (14e-4, 43e-4) (12e-2, 32e-2) 0.75 16e-3 

*NA: Not Applicable; 

**SAP: ‖∆Λ𝑓‖ = 0.2; ***SAP: ‖∆Λ𝑓‖ = 0.4 

 

Illustrative performance of the shared controller, adaptive 

and optimal autopilots are presented in Figures 5-11. Figs. 5-6 

show the details of the shared controller and corresponding 

analysis. Figs. 7-9 show the performance of the optimal, 

adaptive and μ-mod autopilots. Table II lists a summary of the 

overall performance metrics in different controllers. Table III 

carries out a similar comparison in the case when the second 

anomaly was varied from 30% to 10%.  

Figs. 5-9 display the system variables in a similar format, 

with each figure consisting of 3 rows and 2 columns. The left 

column corresponds to the tracking performance and error and 

the right column to the control inputs and instantaneous CfM. 

In the left column, the first and second rows show the plant state 

outputs (ℎ, 𝑉), reference model states (ℎ∗, 𝑉∗) when applicable, 

and desired commands (ℎ0, 𝑉0), while the last row shows the 

instantaneous error (4) about each state output. In the right 



column, the first and second rows show the elevator (𝛿𝑒𝑙) and 

thrust (𝛿𝑡ℎ) deflections within the actual (𝑢𝑚𝑎𝑥𝑖
) and virtual 

saturation (𝑢𝑚𝑎𝑥𝑖
𝛿 ) limits, where applicable. The last row in right 

column shows ci as in (14.b). In each plot, the vertical lines 

correspond to the anomalies, and where applicable to the pilot 

input in the case of the shared controller. 

 

 
Fig. 5. The shared controller with SUP: Left) Tracking performance; Right) 

Control inputs’ status. The vertical dashed lines at t = 125 s and 215 s indicate 

two subsequent anomalies. The vertical lines at t = 130 s and t = 220 s are the 

pilot inputs to tune the parameter μ, where μ(t = 0) = [1 1]; μ(t = 130) = [2 1]; 

μ(t = 220) = [3 1]. The instantaneous errors and normalized CfMs are shown in 
the last row. 

 

D. The Shared Controller Performance 

Fig. 5 shows the performance of the shared controller with a 

situation unaware pilot (SUP). The SUP is assumed to have a 

reaction time of RT = 5 s after which he/she will determine a μ. 

The 1st anomaly occurs at t = 125 s and therefore the pilot is 

assumed to provide the first input at t = 130 s, which is a 

compensatory action by increasing μ to 2. Yet, notably the 

elevator still reaches the saturation limits, an indication of 

insufficient CfM. During this period (130 s ≤ t ≤ 215 s), and as 

shown in the right column, the elevator still reaches virtual 

saturation limits. After the second anomaly, at t = 220 s, and 

considering the low choice of μ, the SUP increases the value of 

μ to 3 which shows to be a not-large-enough value in the rest of 

flight maneuver, as the CfM reaches the zero limit multiple 

times (t > 220). On the other hand, and in this last period, the μ-

mod autopilot starts lowering the desired command (ℎ∗) to 

restore the CfM and improve tracking error through the GCD 

effect as in (15). This is a compensatory action by the autopilot 

to account for the small μ as chosen by the situation unaware 

pilot. The SUP shared controller’s performance pre- and post-

anomaly is numerically listed in the 1st row of Table II. 

Fig. 6 shows the performance of the shared controller with a 

situation aware pilot (SAP). In contrast to the SUP, the SAP 

takes better decisions about μ and will also provide an anomaly 

estimate that will be used in the shared controller as in (17), 

faster after each anomaly. In this example, it was assumed that 

the SAP’s estimation and rating are such that ‖∆Λ𝑓‖ = 0.2. In 

addition, the SAP is assumed to have a reaction time RT = 0.68 

s of providing the parameters. As shown in the right columns, 

and in contrast to SUP, the pilot actions keep the control system 

away from saturation limits throughout the flight maneuver. At 

the same time it achieves a better tracking error and lower 

command degradation. At t = 130.68, the SAP perceives the 

first anomaly and provides an anomaly estimation (𝛬̂𝑓𝑝
) in 

addition to μ = 10. The higher choice of μ (as compared to SUP) 

is only to avoid actuator saturation since SAP has a better 

understanding of the anomaly magnitude and hence the 

requirements to lowering the 𝜌. Similarly and upon the second 

anomaly (t = 215.68 s), the SAP delivers appropriate 𝛬̂𝑓𝑝
 and μ 

to avoid actuator saturation and achieve lower 𝜌. The responses 

in Fig. 6 show that the shared controller tunes the reference 

model outputs (ℎ∗, 𝑉∗) suitably to minimize the tracking error. 

The SAP shared controller performance is numerically 

encapsulated in the 2nd row of Table II. The 3rd row is also 

dedicated to SAP but with a higher estimation error ‖∆Λ𝑓‖ =

0.4 which seems to have a worse performance than SUP. 

 

 
Fig. 6. The shared controller with SAP: Left) Tracking performance; Right) 

Control inputs’ status. The vertical lines correspond to anomalies (t = 125 s, 

215 s) and pilot’s perception (t = 125.68 s, 215.68 s), when the pilot provided 
the anomaly estimate and also tuned the parameter μ, where μ(t = 0) = [1 1]; μ(t 

= 125.68) = [10 1]; μ(t = 215.68) = [30 1]. The instantaneous errors and CfMs 

are shown in the last column. 

 

It is important to note that the pilot (SUP/SAP) achieved 

stability and low tracking error by compromising the original 

command input (r0), i.e. the notion of graceful command 

degradation. It is the unique feature of the shared controller to 

trade-off CfM with command degradation. When anomalies 

cause the control inputs to exceed the virtual saturation limits, 

the autopilot has a built-in mechanism of relaxing the required 



control input magnitude by lowering the command magnitude. 

This effect is clearly shown in Figs. 5-6, where by tuning μ, the 

pilot has reduced the reference commands to increase the 

available CfM. Yet, the obvious question that can be raised 

from this feature is if such a command degradation is acceptable 

in a given mission context. While increasing μ can lead to more 

CfM, this change can also lead to excessive command 

degradation. Our hypothesis is to defer that decision to the 

human pilot who has the highest amount of information at the 

time. 

 

 
Fig. 7.  The optimal autopilot: Left) Tracking performance; Right) Control 

inputs’ status. The vertical dashed lines at t = 125 s and 215 s indicate the two 

subsequent anomalies. The instantaneous error/CfM are shown in the last row. 
 

E. Comparison with Other Controllers  

To provide a benchmark comparison, the performance of 

optimal, adaptive and μ-mod adaptive autopilots are shown in 

Figs. 7-9, using the same simulation scenario as in Figs. 5-6. 

The summary results are also listed in the bottom rows of Table 

II. Table III provides a more comprehensive comparison over 

the full range of loss of actuator effectiveness at second 

anomaly (Λ𝑓 = [0.1:0.02:0.3]). 

The performance of optimal autopilot is shown in Fig. 7, 

where prior and post the first anomaly, the controller shows an 

acceptable performance. Yet, upon the 2nd anomaly the elevator 

control input (𝛿𝑒𝑙) reaches the saturation limit and the lack of 

CfM leads to oscillatory behavior and poor tracking 

performance. As shown in the last row, the errors largely 

increase after the anomalies and the elevator Cel reaches zero. 

Despite good performance under normal condition, the fixed 

gain optimal controller is not able to cope with uncertainties and 

deal well with anomalies. The 4th row in Table II shows the 

numerical performance of this autopilot, which is the worst 

among other methods. 

The proof of stability for the adaptive controller is shown in 

[8] for a linear system under limited parameter uncertainties. 

Fig. 8 shows the performance of the adaptive autopilot during 

the flight scenario in Fig. 4.  The adaptive controller shows an 

acceptable performance both pre-anomaly and post-anomaly. 

This is quantified in Table II which shows that the ρ value of 

the adaptive controller is small in comparison to the optimal 

controller.  Yet, following the 2nd anomaly, the control input 

moves towards saturation limits in an effort to keep the error 

from becoming too large (for example, the peak error in 𝑒ℎ ∼
10−2 around t=230 s).  

 

 
Fig. 8.  The adaptive autopilot: Left) Tracking performance; Right) Control 

inputs’ status. The vertical dashed lines at t = 125 s and 215 s indicate the two 
subsequent anomalies. The instantaneous error/CfM are shown in the last row. 

 

 
Fig. 9.  The μ-mod adaptive autopilot: Left) Tracking performance; Right) 

Control inputs’ status.  The vertical dashed lines at t = 125 s and 215 s indicate 

the two subsequent anomalies. The instantaneous error/CfM are shown in the 
last row. 

 



Fig. 9 shows the performance of the μ-mod adaptive autopilot. 

This autopilot has the ability to trade CfM with GCD, yet has a 

fixed predetermined μ=100. There is no pilot or mechanism to 

tune the μ in face of anomalies making the best selection for the 

CfM-GCD trade-off. Similar to the two autopilots, the μ-mod 

autopilot shows an acceptable performance before the 2nd 

anomaly, yet suffers from actuator saturation afterwards. This 

is due to the very high magnitude of μ which is an initial design 

to prioritize CfM (over GCD). While the higher choice of μ 

could be advantageous in less severe anomalies (see Table III), 

it showed a counter-productive effect given the very high 

amount of anomaly and plant nonlinearities. The 6th row in 

Table II shows the numerical performance of this autopilot.  

Table II shows the summary results for controllers, and 

associated performance metrics using a single simulation case 

as shown in Figures 5-9. All controllers show good 

performance prior to anomaly, yet their differences emerge in 

response to anomalies. Post-anomalies, the shared controller 

with SAP has the best RMSE+, resiliency metric and CfM. 

SAP’s outstanding performance is followed by SUP and 

adaptive autopilot. This is due to the effect of managing CfM in 

each controller.  

 
TABLE III 

COMPREHENSIVE CONTROLLER COMPARISON AVERAGED 
OVER A RANGE OF ANOMALY SEVERITIES.  

# Method 𝜌(ℎ,𝑣) CfM GCD 

1 Optimal (26.59, 5.43) 1.12 NA* 
2 Adaptive (3.68, 0.45) 1.24 NA 

3 μ-mod adaptive  (23e-3, 78e-3) 1.12 79e-4 

4 SAP (28e-4, 18e-3) 1.21 41e-4 

* NA: Not applicable; 𝚲𝒇 = [0.1:0.02:0.3] 

 

Table III provides a more comprehensive comparison among 

the controllers by showing the result over a range of actuator 

effectiveness Λ𝑓 = [0.1:0.02:0.3]. Accordingly, the listed values 

are averaged over Λ𝑓. We also assumed 0.2 parameter 

estimation error (‖∆Λ𝑓‖) for SAP. Accordingly, the SAP shows 

the most resilient performance with post-anomaly error lower 

than pre-anomaly, while also achieving high CfM and GCD. 

The SAP is followed by μ-mod adaptive, adaptive and optimal 

autopilots in terms of ρ while they show similar CfM and GCD. 

The μ-mod adaptive autopilot uses the GCD-CfM trade off 

mechanism to improve tracking performance but suffers from a 

fixed gain. The advantageous effect of having a high μ (μ = 100) 

is observable in this result and in the range of anomalies mostly 

above 0.1. The adaptive and optimal autopilots follow these 

controllers with the worst performance and low CfM.  

 

F. Pilot’s Contribution 

A primary component of the shared controller is the human 

pilot, whose contribution to estimation error is illustrated in Fig. 

10. The top plot shows the pilot’s parameter estimation input 

and the bottom plot shows the pilot’s estimation error. Both 

plots are generated using algebraic simulations of (19) and (36) 

and by considering a scalar 𝜆𝑓𝑖
. The top contour is a direct 

demonstration of (19) showing the estimated parameter (𝜆̂𝑓) by 

varying pilot’s expertise (𝜂) and estimate input (𝜆̂𝑓𝑝
). The range 

of parameters are selected as η = [0.1:0.01:1], and 𝜆̂𝑓𝑝
 = 

[0.1:0.01:1]. Accordingly each point on the plot represents the 

estimated parameter (𝜆̂𝑓) based on the pilot’s input estimate 

(𝜆̂𝑓𝑝
) and expertise (𝜂) using (19). The contour lines show a 

hyperbolic effect, which is due to the 𝜂𝛬̂𝑓𝑝
 product in (19). 

Moving along the 𝜆̂𝑓𝑝
-axis with (η = 0) results in high parameter 

estimate (≈ 1), due to the dominance of the second term (1 −
0)𝜆𝑛𝑜𝑚. It is the characteristic of the proposed model to 

undermine the pilot’s input estimate in case of low expertise. 

Conversely, moving on the top along the 𝜆̂𝑓𝑝
-axis with (η = 1) 

delivers a parameter estimate exactly equal to the pilot’s input. 

The pilot’s input receives the highest weight in case of higher 

expertise (η).  

 
Fig. 10. Pilot’s estimate contribution; Top: Parameter estimate based on pilot’s 
input and expertise; Bottom: Mean parameter estimation error based on the 

pilot’s estimation error and expertise. 
 

The second analysis, in the bottom plot, is the mean parameter 

estimation error based on the pilot’s error and expertise. The 

range of parameters are the same as the top plot, with the 

addition of actuator effectiveness Λ𝑓 = [0:0.01:1], whose effect 

is averaged to produce a 2-D figure. The pilot estimation error 

is assumed to vary Λ𝑓 = [−0.5: 0.01: 0.5]. Accordingly, each 

point on the contour corresponds to a specific pilot error 

(∆𝜆𝑓𝑝
= 𝜆𝑓 − 𝜆𝑓𝑝

) and expertise (η) averaged over the full range 

of actuator effectiveness (Λ𝑓 = [0:0.01:1]). Similar to the top 

contour, higher values of expertise (η) is associated with less 

difference between the parameter estimation error (∆𝜆𝑓) and 

pilot estimation error (∆𝜆𝑓𝑝
). Lower range of η removes the 

sensitivity to the pilot error axis, leading to maximum error. 

While moving to the left of ∆𝜆𝑓-axis increases the final error 

(∆𝜆𝑓), moving to the right mostly decreases the error. This is an 

interesting characteristic of this plot model, where pilot’s 



under-estimation (e.g. 𝜆𝑓 = 0.6, 𝜆𝑓𝑝
= 0.4) produces lower 

error than over-estimation (e.g. 𝜆𝑓 = 0.4, 𝜆𝑓𝑝
= 0.6). Hence the 

pilot should avoid over-estimating the actuator effectiveness.  

G. Resilient Control 

As mentioned earlier, resilient control was defined as the 

system’s ability to trade-off CfM with GCD so as to deliver the 

same tracking performance both before and after the occurrence 

of anomalies. As mentioned earlier, the choice of μ directly 

affects CfM and indirectly affects GCD. For any μ, the adaptive 

controller guarantees that the state error e goes to zero. In 

summary, the choice of μ directly affects the resilience of the 

overall system.  

Given the performance of the shared controller, the question 

is how one chooses the best μ? Higher the μ, better the CfM, but 

at the expense of increased GCD. Greater the μ, greater the 

departure of the command signal 𝑟0(𝑡) + 𝐾𝑢
𝑇(𝑡)∆𝑢𝑎𝑑(𝑡) from 

the original command signal 𝑟0(𝑡). In general, the desired 

command may not be altered beyond certain acceptable limits. 

Too much command degradation, for instance, may lead to too 

long an arrival-time or, in extreme case scenarios, a non-arrival 

altogether at the destination. These limits in turn will, most 

likely, determine the achievable tracking performance and CfM 

and therefore the overall resilient control performance. We 

therefore propose that the ideal selection of μ be delegated to 

the pilot, as he or she may be aware of the allowable GCD and 

desirable CfM. 

The analysis tested the shared resilient controller performance 

relative to alternative autopilot designs using a numerical 

simulation based on a nonlinear F-16 aircraft. Primary 

assessment metrics used were CfM, GCD, tracking 

performance and parameter estimation error. The proposed 

shared controller showed superior performance over optimal, 

adaptive and μ-mod adaptive autopilots.  

H. Comparison with a Fault-tolerant Controller 

Yet another class of control methods that is applicable when 

anomalies occur is Fault-Tolerant Control (FTC). In [20], we 

have provided a complete comparison between our proposed 

shared controller and the FTC which we repeat here for 

completeness. In this section, we compare our approach to that 

suggested in [43-44], where a FTC method is proposed to deal 

with anomalies that may occur in actuators. This FTC consists 

of a diagnosis and a control component, where the former 

assumes that the effect of the anomaly is estimated using an 

identification method such as bank of Kalman filters. The 

control component is composed of fixed-gain feedback, 

feedforward and reference model components. Upon 

identification of an anomaly, the feedback gains are computed, 

reference model updated and command inputs degraded into 

lower magnitudes so as to avoid actuator saturation. The 

complete explanation of this method can be found in Zhang et 

al. [43-44]. 

As in [20], we design the controller based on a linearized 4th 

order model of an F-8 aircraft, with two inputs and two outputs 

was simulated similar to [43-44], where the state of plant and 

reference model are 𝑥 = [𝑝 𝑟 𝛽 𝜑]𝑇 and 𝑥𝑚 =
[𝑝𝑚 𝑟𝑚  𝛽𝑚 𝜑𝑚]𝑇, the control input and command input are 𝑢 =
[𝛿𝑎 𝛿𝑟]𝑇, 𝑟0 = [3 8]𝑇, respectively with p denoting the roll rate, 

r the yaw rate, β the sideslip angle, φ the bank angle, 𝛿𝑎 the 

aileron deflection, and 𝛿𝑟 the rudder deflection. System 

parameters are shown in Table IV.  

 
TABLE IV 

The open-loop system parameters of the linear F-8 aircraft for comparison 
with FTC.  
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The control objective is a set-point command tracking for 

sideslip and bank angles. The deteriorating scenario of two 

consecutive faults were introduced at 35 s and 36 s, with the 

magnitude of 50% and 75% loss of actuator effectiveness, that 

was simulated by varying 𝜆𝑓 

 

                  𝜆𝑓 = {
1       𝑡 < 35 𝑠
0.5    𝑡 = 35 𝑠

0.25    𝑡 ≥ 36 𝑠
                (37) 

 

 
Fig. 11. The proposed shared controller performance.  

 

 
Fig. 12. The FTC performance.  

 



Figures 11 and 12 show the performance of the controllers 

through the responses of the sideslip angle and bank angle as 

well as the corresponding aileron and rudder deflections. As 

described in (37), two faults were introduced, one at 35 s and 

the other at 36 s, through a suitable selection of 𝜆𝑓. The anomaly 

occurrence and pilot perception/reconfiguration are shown by 

vertical dotted lines in both figures. As shown in the left 

columns of both figures, controllers degraded the desired angles 

to achieve the tracking performance, and the shared controller 

shows a better tracking response. The right column in both 

figures shows the rudder and aileron control inputs. The 

magnitude limits 𝑢𝑚𝑎𝑥𝑖
 from (2) is shown in both figures and 

the virtual magnitude limit  𝑢𝑚𝑎𝑥𝑖
𝛿  from (7) in Fig. 11. Rudder 

and aileron are suddenly saturated in the case of fixed-gain 

FTC, while in the shared controller the rudder is smoothly 

following the saturation limits and aileron is distant from 

saturation. 

Figures 11-12 show that in comparison to the FTC, our shared 

controller results in both reduced tracking error and reduced 

command degradation. More details related to this comparison 

can be found in [20]. 

V.  SUMMARY AND CONCLUDING REMARKS 

The Resilience Engineering agenda has aspired to develop 

mechanisms for resilient control [29]. This paper addresses that 

aspiration by providing a resilient control architecture based on 

regulating Capacity for Maneuver (CfM) and Graceful 

Command Degradation (GCD). This architecture consists of a 

shared controller between a pilot and autopilot actions, with 

specific roles prescribed for both decision-making entities. In 

particular, it is proposed that the pilot recognizes the anomaly 

and specifies a parameter μ, which leads to a maximum CfM 

with a minimal GCD, which is then used by the adaptive 

autopilot to deliver a satisfactory tracking performance and 

stability. The autopilot is based on a combination of adaptive 

controllers in [8] and [23], and guarantees boundedness. 

Extensive numerical simulations were provided, both of a 

nonlinear model of an F-16 aircraft and a linear model of an F-

8 aircraft, which show that the shared controller results in a 

satisfactory performance, and compared at length with a variety 

of controllers that are non-adaptive, optimal, adaptive but uses 

only an autopilot, and fault-tolerant. In all cases, it was shown 

that the shared adaptive controller provides better performance. 

The paper provides a comparative test of the shared resilient 

control architecture for a specific flight control case and 

scenario. The architecture provides specific performance 

metrics, and the test provides detailed performance measures. 

The key finding is that the shared controller improved resilient 

performance for handling anomalous conditions.  As a result, 

the test provides a potential standard for quantitative analysis of 

resilient performance.   

This new shared control architecture addresses the problem of 

bumpy transfers of control in current human-automation 

systems. Current forms of shared control virtually guarantee 

late transfers of control that increase the risk of 

decompensation—inability of a human-machine system to keep 

pace with growing or cascading demands [3].  This risk has 

contributed to actual accidents [2], [30] where loss of vehicle 

control resulted from bumpy and late transfers from autopilot 

to human pilot. The shared resilient control architecture 

developed here demonstrates there are alternative architectures, 

and the simulation studies in this paper show that alternative 

shared control architectures can resolve the bumpy transfer of 

control problem. 

The paper also provides a demonstration of the value of 

theoretical advances in Resilience Engineering [1]-[4]. The 

Theory of Graceful Extensibility [4] specifies that adaptive 

units and networks (in this case the shared human and autopilot 

control) should regulate Capacity for Maneuver in order to be 

resilient in the face of anomalies that challenge normal function 

(in this case what an autopilot can handle by itself). The shared 

control architecture was developed to regulate Capacity for 

Maneuver. Other research results have shown that adaptive 

units at different scales can monitor their capacity for maneuver 

and can adapt to compensate when the risk of saturation gets 

too high [31]. This paper demonstrates that the general concept 

in the theory can be defined and used in specific control 

problems. This paper also shows that systems designed to 

regulate Capacity for Maneuver can produce improved 

performance in the face of anomalies. The end result is a new 

path forward for the design of shared human and machine 

systems that can reliably produce resilient performance in the 

face of disturbances, anomalies, and cascades that exceed the 

machine’s capability alone.  
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