Problem 1: Stability (25 points)

(a) What are the equilibrium states of the differential equation
\[
\ddot{x} + \sin x = 0
\] (1)
Are they (i) stable, (ii) uniformly stable, (iii) uniformly asymptotically stable, or (iv) uniformly asymptotically stable in the large?

(b) For the equation
\[
\ddot{x} + 3\dot{x} + 2x = 0
\] (2)
show that \(V = x^2 + \frac{1}{2} \dot{x}^2 \) is a Lyapunov function. Is the equilibrium state of (2) (i) uniformly stable, (ii) uniformly asymptotically stable, (iii) u.a.s.l.?

(c) Let \(A \) be a constant matrix in \(\mathbb{R}^{n \times n} \). For the equation
\[
\dot{x} = Ax
\]
what are the conditions on \(A \) under which
\[
\lim_{t \to \infty} x(t) = 0
\]
If \(A(t) \) is a time-varying matrix, with all eigenvalues in the left-half complex plane, and \(\dot{x} = A(t)x \), can you conclude that \(\lim_{t \to \infty} x(t) = 0 \)?

(d) Consider the differential equation
\[
\dot{x}(t) = (e^{\Omega t}Be^{-\Omega t})x(t) \quad x(t_0) = x_0
\] (3)
where \(\Omega \) and \(B \) are constant matrices. The solution of (3) is given by
\[
x(t) = e^{\Omega t}e^{(-\Omega+B)t}x_0
\]
Use this result to answer the following: A rotating mechanical system can be described by the differential equation
\[
\dot{x}(t) = \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix} \begin{bmatrix} -1 & -3 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix} x(t) = A(t)x(t); \quad x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
\]
What are the eigenvalues of \(A(t) \)? What is the behavior of the solutions as \(t \to \infty \)? What can you conclude about solutions of time-varying differential equations?
Problem 2: Output-Feedback Control (30 points)

Consider the unknown plant

\[m\ddot{y} + \beta \dot{y} + ky = u \]

(4)

where \(k \) and \(\beta \) are unknown scalars and \(m \) is a known scalar with \(m > 0 \). The goal is to design \(u \) so that \(y \) tracks a desired trajectory \(y_d \) as \(t \to \infty \). Assume that both \(\dot{y}_d \) and \(\ddot{y}_d \) are available signals. Design an adaptive phase lead controller for the following two scenarios

(a) \(y \) and \(\dot{y} \) are measurable

(b) only \(y \) is measurable

Problem 3: CRM and Disturbances (25 points)

Consider the unknown plant

\[
\dot{x} = Ax + b\lambda u + d \\
y = c^\top x
\]

where \(c, b \in \mathbb{R}^n \) are completely known, \(A \in \mathbb{R}^{n \times n} \) is unknown, \(\lambda \) is unknown with a known sign, \(x \) is accessible for measurement, \(d \) is a constant unknown disturbance, and \((A, b) \) is controllable. The reference model is chosen as

\[
\dot{x}_m = A_m x + b r + \ell (y - y_m) \\
y_m = c^\top x_m
\]

You can assume that there exists a \(\theta^* \) such that \(A + b\theta^* = A_m \).

(a) Assume that \(d = 0 \) and \(\ell \neq 0 \). How would you choose \(\ell \) such that a globally stable adaptive controller can be designed such that \(x \) tracks \(x_m(t) \) asymptotically?

(b) Determine an adaptive controller for the above problem (when \(d = 0 \) and \(\ell \neq 0 \)). Prove that it is stable and the tracking goal mentioned in (a) is satisfied.

(c) Suppose that \(d \neq 0 \) and \(\ell \neq 0 \). Design an adaptive controller that still ensures stability and tracking. Prove that your controller meets the above goals, i.e. \(x \to x_m \) asymptotically.

Problem 4: Adaptive Control with Multiple Inputs (25 points)

Consider the multi-input plant given by

\[
\dot{x} = Ax + B\Lambda^* u
\]

(5)

where \(A \) and \(B \) are known, \(A \) is Hurwitz, and \(\Lambda^* \) is a general unknown matrix of the form

\[
\Lambda^* = \begin{bmatrix}
\lambda_1^* & \lambda_2^* \\
\lambda_2^* & \lambda_3^*
\end{bmatrix}
\]

(6)
Dimensions of these matrices are given below:

\[A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \quad \Lambda^* \in \mathbb{R}^{m \times m} \quad (7) \]

Suppose a reference model is given by

\[\dot{x}_m = A_m x_m + Br \quad (8) \]

where \(A_m \) has eigenvalues faster than \(A \) and satisfies the matching condition as \(A_m = A + BK^* \) for a \(K^* \in \mathbb{R}^{m \times n} \).

Answer the following questions:

1. Make appropriate assumption(s) and design an adaptive control input \(u \) such that \(x \to x_m \) when \(r(t) \in \mathbb{R}^{m \times 1} \) is a piecewise continuous function, so that (i) the adaptive controller must have smooth transients and (ii) the closed-loop adaptive system must have bounded solutions.

2. Numerically simulate the above adaptive system. You may assume that \(r(t) = [5 \sin(t), 5 \cos(t)]^T \), and

\[
A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ -1 & 2 \end{bmatrix}, \quad \Lambda^* = \begin{bmatrix} 1.5 & 0.2 \\ 0.2 & 0.5 \end{bmatrix} \quad (9)
\]

You may choose an appropriate \(A_m \). Your simulation should have initial conditions for \(x(0) = [2, 2, 2]^T \) and \(x_m(0) = [0, 0, 0]^T \). Your plots must include the states \(x, x_m \), the commands \(r \), the inputs \(u \), and the adaptive control parameters as functions of time. The plots must show that your adaptive controller has smooth transients, that \(x \to x_m \) asymptotically, and that \(|x(t) - x_m(t)| < 0.2 \) for \(t > 10 \) sec.