2.153 Adaptive Control
Lecture 10
Uniform Asymptotic Stability

Anuradha Annaswamy

aanna@mit.edu
- **Pset #1** out: Thu 19-Feb, **due: Fri 27-Feb**
- **Pset #2** out: Wed 25-Feb, **due: Fri 6-Mar**
- **Pset #3** out: Wed 4-Mar, **due: Fri 13-Mar**
- **Pset #4** out: Wed 11-Mar, **due: Fri 20-Mar**
- **Midterm (take home)** out: Mon 30-Mar, **due: Fri 3-Apr**
Adaptive Systems; History; Control of Plants with Unknown Parameters

Algebraic Systems

\[y = \theta T u \]

Dynamic Systems

\[\dot{x} = a_p x + k_p u, \quad a_p, k_p \text{unknown} \]

Identify \(a \), \(b \)

Control:

\[u = \theta x + kr, \quad \dot{\theta} = -\text{sign}(k)(x - x_m) \]
\[\dot{k} = -\text{sign}(k)(x - x_m) r \]

ORM:

\(x_m \) determined by a linear reference model

CRM:

\(x_m \) determined by a closed-loop reference model

n-th order Dynamic Systems

\[\dot{X} = A_p X + B_p u \]

Find \(u \) so that \(X \to X_m \)

\(B_p \) known

\(B_p = B \Lambda \), \(B \) known, \(\Lambda \) diagonal, sign of entries known.

\(B_p \) unknown: Local stability

Adaptive PI Control

Adaptive PID Control

Adaptive Phase Lead Compensators

Both \(x \) and \(\dot{x} \) measurable

Only \(x \) measurable
Adaptive Systems; History; Control of Plants with Unknown Parameters

Algebraic Systems \(y = \theta^T u \); Identify \(\theta \)

Dynamic Systems \(\dot{x} = a_p x + k_p u, \ a_p, k_p \) unknown
- Identify \(a, b \)
- Control: \(u = \theta x + kr, \ \dot{\theta} = -\text{sign}(k)(x - x_m)x, \ \dot{k} = -\text{sign}(k)(x - x_m)r \)
- ORM: \(x_m \) determined by a linear reference model
- CRM: \(x_m \) determined by a closed-loop reference model
Adaptive Systems; History; Control of Plants with Unknown Parameters

Algebraic Systems $y = \theta^T u$; Identify θ

Dynamic Systems $\dot{x} = a_p x + k_p u$, a_p, k_p unknown
- Identify a, b
- Control: $u = \theta x + kr$, $\dot{\theta} = -\text{sign}(k)(x - x_m)x$, $\dot{k} = -\text{sign}(k)(x - x_m)r$
- ORM: x_m determined by a linear reference model
- CRM: x_m determined by a closed-loop reference model

nth order Dynamic Systems $\dot{X} = A_p X + B_p u$. Find u so that $X \rightarrow X_m$
- B_p known
- $B_p = B\Lambda$, B known, Λ diagonal, sign of entries known.
- B_p unknown: Local stability
Adaptive Systems; History; Control of Plants with Unknown Parameters

Algebraic Systems \(y = \theta^T u \); Identify \(\theta \)

Dynamic Systems \(\dot{x} = a_p x + k_p u, \) \(a_p, k_p \) unknown

- Identify \(a, b \)
- Control: \(u = \theta x + kr, \dot{\theta} = -\text{sign}(k)(x - x_m)x, \dot{k} = -\text{sign}(k)(x - x_m)r \)
- ORM: \(x_m \) determined by a linear reference model
- CRM: \(x_m \) determined by a closed-loop reference model

\(n \)th order Dynamic Systems \(\dot{X} = A_p X + B_p u. \) Find \(u \) so that \(X \rightarrow X_m \)

- \(B_p \) known
- \(B_p = B\Lambda, B \) known, \(\Lambda \) diagonal, sign of entries known.
- \(B_p \) unknown: Local stability

Adaptive PI Control

Adaptive PID Control

Adaptive Phase Lead Compensators

- Both \(x \) and \(\dot{x} \) measurable
- Only \(x \) measurable
Stability and Asymptotic Stability

(i)

\[V(x) > 0 \]
\[\dot{V}(x) \leq 0 \]

\[x \in \mathcal{L}_\infty \quad \text{— Uniform Stability} \]
Stability and Asymptotic Stability

(i)

\[V(x) > 0 \]
\[\dot{V}(x) \leq 0 \]

\[\Rightarrow x \in \mathcal{L}_\infty \quad - \text{Uniform Stability} \]

(ii)

\[V(x) > 0 \]
\[\dot{V}(x) < 0 \]

\[\Rightarrow x \in \mathcal{L}_\infty, \quad \lim_{t \to \infty} x(t) = 0 \quad - \text{Uniform Asymptotic Stability} \]
Stability and Asymptotic Stability

(i)

\[V(x) > 0 \]
\[\dot{V}(x) \leq 0 \]
\[\Rightarrow x \in \mathcal{L}_\infty \quad \text{— Uniform Stability} \]

(ii)

\[V(x) > 0 \]
\[\dot{V}(x) < 0 \]
\[\Rightarrow x \in \mathcal{L}_\infty, \quad \lim_{t \to \infty} x(t) = 0 \quad \text{— Uniform Asymptotic Stability} \]

(iii) Adaptive Systems:

\[V(x) > 0 \]
\[\dot{V}(x) \leq 0 \]
\[\Rightarrow x \in \mathcal{L}_\infty. \]
Stability and Asymptotic Stability

(i)
\[V(x) > 0 \]
\[\dot{V}(x) \leq 0 \]
\[\Rightarrow x \in \mathcal{L}_\infty \]
 - Uniform Stability

(ii)
\[V(x) > 0 \]
\[\dot{V}(x) < 0 \]
\[\Rightarrow x \in \mathcal{L}_\infty, \lim_{t \to \infty} x(t) = 0 \]
 - Uniform Asymptotic Stability

(iii) Adaptive Systems:
\[V(x) > 0 \]
\[\dot{V}(x) \leq 0 \]
\[\Rightarrow x \in \mathcal{L}_\infty. \text{ How do we show that } \lim_{t \to \infty} x(t) = 0 \]
Example: First-order plant - Adaptive Control

\[u(t) = \theta x_p + kr \]

\[\dot{\theta}(t) = -\gamma \text{sign}(k_p) e \]

(i) Stability; (ii) \(\lim_{t \to \infty} e(t) = 0 \)
Example: First-order plant - Adaptive Control

\[u(t) = \theta x_p + kr \]
\[\dot{\theta}(t) = -\gamma \text{sign}(k_p) e_p, \quad \dot{k}(t) = -\gamma \text{sign}(k_p) e_r \]

(i) Stability; (ii) \(\lim_{t \to \infty} e(t) = 0 \) (iii) When do \(\theta(t) \to \theta^* \) and \(k(t) \to k^* \)?
Example: First-order plant - Adaptive Control

\[u(t) = \theta x_p + kr \]
\[\dot{\theta}(t) = -\gamma \text{sign}(k_p) e x_p, \quad \dot{k}(t) = -\gamma \text{sign}(k_p) e r \]

(i) Stability; (ii) \(\lim_{t \to \infty} e(t) = 0 \) (iii) When do \(\theta(t) \to \theta^* \) and \(k(t) \to k^* \) ?

\[a_p + k_p \theta^* = a_m, \quad k_p k^* = k_m \]