2.153 Adaptive Control
Lecture 1
Simple Adaptive Systems: Identification

Anuradha Annaswamy

aanna@mit.edu
Adaptive Control: The control of Uncertain Systems
Adaptive Control: The control of Uncertain Systems

Adaptive Control (in this Course): The control of Linear Time-invariant Plants with Unknown Parameters
Adaptive Control: A Parametric Framework

- Nonlinear, time-varying, with unknown parameter θ
 \[
 \dot{x} = f(x, u, \theta, t) \quad y = h(x, u, \theta, t)
 \]

- Linear Time-Varying (LTV) with unknown parameter θ
 \[
 \dot{x} = A(\theta, t)x + B(\theta, t)u \quad y = C(\theta, t)x + D(\theta, t)u
 \]

- Linear Time-Invariant (LTI) with unknown parameter θ
 \[
 \dot{x} = A(\theta)x + B(\theta)u \quad y = C(\theta)x + D(\theta)u
 \]
Adaptive Control: A Parametric Framework

- Nonlinear, time-varying, with unknown parameter θ
 \[\dot{x} = f(x, u, \theta, t) \quad y = h(x, u, \theta, t) \]

- Linear Time-Varying (LTV) with unknown parameter θ
 \[\dot{x} = A(\theta, t)x + B(\theta, t)u \quad y = C(\theta, t)x + D(\theta, t)u \]

- Linear Time-Invariant (LTI) with unknown parameter θ
 \[\dot{x} = A(\theta)x + B(\theta)u \quad y = C(\theta)x + D(\theta)u \]

System to be controlled (open-loop): Plant
Adaptive Control: A Parametric Framework

- Nonlinear, time-varying, with unknown parameter θ
 \[\dot{x} = f(x, u, \theta, t) \quad y = h(x, u, \theta, t) \]

- Linear Time-Varying (LTV) with unknown parameter θ
 \[\dot{x} = A(\theta, t)x + B(\theta, t)u \quad y = C(\theta, t)x + D(\theta, t)u \]

- Linear Time-Invariant (LTI) with unknown parameter θ
 \[\dot{x} = A(\theta)x + B(\theta)u \quad y = C(\theta)x + D(\theta)u \]

System to be controlled (open-loop): Plant
Controlled System (closed-loop): System
Direct and Indirect Adaptive Control

θ_p: Plant parameter - unknown;

θ_c: Control parameter
Direct and Indirect Adaptive Control

\(\theta_p \): Plant parameter - unknown; \(\theta_c \): Control parameter

Indirect Adaptive Control: Estimate \(\theta_p \) as \(\hat{\theta}_p \). Compute \(\hat{\theta}_c \) using \(\hat{\theta}_p \).

\[\theta_p \rightarrow \hat{\theta}_p \rightarrow \hat{\theta}_c \]
Direct and Indirect Adaptive Control

\[\theta_p: \text{Plant parameter - unknown;} \]
\[\theta_c: \text{Control parameter} \]

Indirect Adaptive Control: Estimate \(\theta_p \) as \(\hat{\theta}_p \). Compute \(\hat{\theta}_c \) using \(\hat{\theta}_p \).

\[\theta_p \rightarrow \hat{\theta}_p \rightarrow \hat{\theta}_c \]

Direct Adaptive Control: Directly estimate \(\theta_c \) as \(\hat{\theta}_c \). Compute the plant estimate \(\hat{\theta}_p \) using \(\hat{\theta}_c \).

\[\theta_p \rightarrow \theta_c \rightarrow \hat{\theta}_c \]
Identification of a Single Parameter

θ: Unknown, scalar

$y(t) = \theta u(t)$
Identification of a Single Parameter

θ: Unknown, scalar

$y(t) = \theta u(t)$

Identify θ using measurements $\{u(t), y(t)\}$.
Identification of a Vector Parameter

\[y(t) = \theta^T u(t) \]

Identify \(\theta \) using measurements \(\{u(t), y(t)\} \).
Identification of a Vector Parameter

\[y(t) = \theta^T u(t) \]

\(y \in \mathbb{R}, \)
Identification of a Vector Parameter

\[\mathbf{y}(t) = \mathbf{\theta}^T \mathbf{u}(t) \]

\[\mathbf{y} \in \mathbb{R}, \quad \mathbf{\theta} \in \mathbb{R}^n, \]
Identification of a Vector Parameter

\[y(t) = \theta^T u(t) \]

\[y \in \mathbb{R}, \quad \theta \in \mathbb{R}^n, \quad u : \mathbb{R}^+ \to \mathbb{R}^n \]
Identification of a Vector Parameter

\[y(t) = \theta^T u(t) \]

\(y \in \mathbb{R}, \quad \theta \in \mathbb{R}^n, \quad u : \mathbb{R}^+ \rightarrow \mathbb{R}^n \)

Identify \(\theta \) using measurements \(\{u(t), y(t)\} \).
Identification of a Single Parameter - Recursive Scheme

\[y(t) = \theta u(t) \]

\(\theta \): Unknown, scalar
Identification of a Single Parameter - Recursive Scheme

\[y(t) = \theta u(t) \]

\(\theta \): Unknown, scalar
Identify \(\theta \) as \(\hat{\theta}(t) \) at every instant
Identification of a Vector Parameter - Recursive Scheme

\[y(t) = \theta^T u(t) \]

\[y \in \mathbb{R}, \quad \theta \in \mathbb{R}^n, \quad u : \mathbb{R}^+ \rightarrow \mathbb{R}^n \]

Identify \(\theta \) as \(\hat{\theta}(t) \) at every instant
Error Model 1

\(\hat{\theta} \): Unknown, \(u(t) \) and \(e(t) \) can be measured at each instant \(t \).
Identification of a Parameter in a Dynamic System

Simplest Transfer Function of a Motor:

\[V \rightarrow \frac{K}{Js + B} \rightarrow \omega \]

\(V \): Voltage input \hspace{1cm} \(\omega \): Angular Velocity output

\(K, J, B \): Physical parameters

Plant:

\[\frac{K}{Js + B} = \frac{a_1}{s + \theta_1} \]
Identification of a Parameter in a Dynamic System

Simplest Transfer Function of a Motor:

\[\frac{V}{\omega} = \frac{K}{Js + B} \]

\[V : \text{Voltage input} \quad \omega : \text{Angular Velocity output} \]

\[K, J, B : \text{Physical parameters} \]

Plant:

\[\frac{K}{Js + B} = \frac{a_1}{s + \theta_1} \]

\[K, J, B \text{ unknown} \Rightarrow a_1, \theta_1 \text{ unknown} \]
One way of identifying parameters a_1 and θ_1

Assume that a_1 is known.
One way of identifying parameters a_1 and θ_1

Assume that a_1 is known. Identify θ_1 as $\hat{\theta}$.
One way of identifying parameters a_1 and θ_1

Assume that a_1 is known. Identify θ_1 as $\hat{\theta}$.

$$\tilde{\theta} = \hat{\theta} - \theta_1$$

Plant: $\dot{\omega} = -\theta_1 \omega + u \quad u = a_1 V$
\[\dot{e} = -\theta_1 e + \tilde{\theta} u \]
An alternate procedure for identifying θ_1:

$$\frac{a_1}{s + \theta_1} = \frac{a_1}{s + \theta_m} \frac{1 + \frac{\theta_m - \theta_1}{s + \theta_m}}{1}$$

$\theta \equiv \theta_1 - \theta_m$
Stability

Behavior near an Equilibrium Point.
Stability

Behavior near an Equilibrium Point.
Consider the following dynamical system

\[\dot{x}(t) = f(x(t), t) \]
\[x(t_0) = x_0 \]

(1)

Definition: equilibrium point (pg 45) The state \(x_{eq} \) is an *equilibrium point* of (1) if it satisfies:

\[f(x_{eq}, t) = 0 \]

(2)

for all \(t \geq t_0 \).
Stability of LTI Plants

A motivating example: determine the stability of the origin for the following scalar system

\[\dot{x}(t) = Ax(t) \]

Equilibrium point: \(x = 0 \)
Stability of LTI Plants

A motivating example: determine the stability of the origin for the following scalar system

$$\dot{x}(t) = Ax(t)$$

Equilibrium point: \(x = 0 \)

Can determine the stability of the origin by evaluating eigenvalues of \(A \)

$$x(t) = e^{A(t-t_0)}x(t_0)$$

$$A = V\Lambda V^{-1}; \quad V : \text{from eigenvector; } \Lambda : diag(\lambda_i) : \text{from eigenvalues}$$

Stability follows if \(Re(\lambda_i) \leq 0 \)

Asymptotic stability follows if \(Re(\lambda_i) < 0. \)
Stability of LTI Plants

A motivating example: determine the stability of the origin for the following scalar system

\[\dot{x}(t) = Ax(t) \]

Equilibrium point: \(x = 0 \)
Can determine the stability of the origin by evaluating eigenvalues of \(A \)

\[x(t) = e^{A(t-t_0)}x(t_0) \]

\[A = V \Lambda V^{-1}; \quad V : \text{from eigenvector;} \quad \Lambda : \text{diag}(\lambda_i) : \text{from eigenvalues} \]

Stability follows if \(Re(\lambda_i) \leq 0 \)
Asymptotic stability follows if \(Re(\lambda_i) < 0 \).

Lyapunov’s methods allow us to determine the stability of an equilibrium for such a system without solving the differential equation!
Lyapunov Stability

For the system

\[\dot{x} = f(x) \]

Let

(i) \(V(x) > 0, \ \forall x \neq 0, \text{ and } V(0) = 0 \)
(ii) \(\dot{V}(x) = \left(\frac{\partial V}{\partial x} \right)^T f(x) < 0 \)
(ii) \(V(x) \to \infty \text{ as } \|x\| \to \infty \)

Then \(x = 0 \) is asymptotically stable.
Lyapunov Stability

For the system

\[\dot{x} = f(x) \]

Let

1. \(V(x) > 0, \ \forall x \neq 0, \) and \(V(0) = 0 \)
2. \(\dot{V}(x) = \left(\frac{\partial V}{\partial x} \right)^T f(x) < 0 \)
3. \(V(x) \to \infty \) as \(\|x\| \to \infty \)

Then \(x = 0 \) is asymptotically stable.

If instead of (ii), we have

(ii') \(\dot{V} \leq 0 \)

Then \(x = 0 \) is stable.
Error Model 1

Error Model 1 leads to the following

\[\dot{x}(t) = A(t)x(t) \quad A(t) = -u(t)u^T(t) \]

Equilibrium point: \(x = 0 \)
Error Model 1

Error Model 1 leads to the following

\[\dot{x}(t) = A(t)x(t) \quad A(t) = -u(t)u^T(t) \]

Equilibrium point: \(x = 0 \)

Choose a quadratic function

\[V = \frac{1}{2}x^Tx \]

\[\dot{V} = x^T A(t)x = -x^Tu(t)u^T(t)x = -\left(x^Tu(t)\right)^2 \leq 0 \]
Error Model 1

Error Model 1 leads to the following

\[\dot{x}(t) = A(t)x(t) \quad A(t) = -u(t)u^T(t) \]

Equilibrium point: \(x = 0 \)
Choose a quadratic function

\[
V = \frac{1}{2}x^T x \\
\dot{V} = x^T A(t)x = -x^T u(t)u^T(t)x = - (x^T u(t))^2 \leq 0
\]

\[\Rightarrow \text{stability.} \]
Error Model 1

Error Model 1 leads to the following

\[
\dot{x}(t) = A(t)x(t) \quad A(t) = -u(t)u^T(t)
\]

Equilibrium point: \(x = 0 \)
Choose a quadratic function

\[
V = \frac{1}{2}x^T x
\]

\[
\dot{V} = x^T A(t)x = -x^T u(t)u^T(t)x = - (x^T u(t))^2 \leq 0
\]

\(\Rightarrow \) stability.

A later lecture will show that if \(u(t) \) is "persistently exciting", \(x(t) \to 0 \).
Error Model 1

Error Model 1 leads to the following

\[\dot{x}(t) = A(t)x(t) \quad A(t) = -u(t)u^T(t) \]

Equilibrium point: \(x = 0 \)
Choose a quadratic function

\[V = \frac{1}{2}x^T x \]

\[\dot{V} = x^T A(t)x = -x^T u(t)u^T(t)x = -\left(x^T u(t)\right)^2 \leq 0 \]

\(\Rightarrow \) stability.
A later lecture will show that if \(u(t) \) is "persistently exciting", \(x(t) \rightarrow 0 \). We therefore conclude that error model 1 leads to a stable parameter estimation. Asymptotic stability will be shown later.