Adaptive Control of nth order plants - with single input

Plant: $\dot{X}_p = A_p X_p + b_p u,$
Adaptive Control of nth order plants - with single input

Plant: $\dot{X}_p = A_p X_p + b_p u, A_p \in \mathbb{R}^{n \times n}, b_p \in \mathbb{R}^n, u \in \mathbb{R}$

Controller: $u = \theta^T_c X_p + k_c r$

Matching conditions: $A_p + b_p \theta^*_T = A_m; b_p k_* = b_m$

Reference Model: $\dot{X}_m = A_m X_m + b_m r$

Solution: $\theta^*_c = \theta^*_*, k^*_c = k^*_*$

Choose Controller: $u(t) = \theta^T_c(t) X_p + k_c(t) r$

Closed-loop: $\dot{X}_p = [A_p + b_p \theta^*_T] X_p + b_p (k_* + \tilde{k}) r = A_m X_p + b_p \tilde{\theta}^*_T X_p + b_p \tilde{k} r + b_m r$
Adaptive Control of nth order plants - with single input

Plant: $\dot{X}_p = A_p X_p + b_p u, A_p \in \mathbb{R}^{n \times n}, b_p \in \mathbb{R}^n, u \in \mathbb{R}$

Controller: $u = \theta^T X_p + k_c r$

Closed-loop: $\dot{X}_p = [A_p + b_p \theta^T] X_p + b_p k_c r$
Adaptive Control of nth order plants - with single input

Plant: $\dot{X}_p = A_p X_p + b_p u, A_p \in \mathbb{R}^{n \times n}, b_p \in \mathbb{R}^n, u \in \mathbb{R}$

Controller: $u = \theta_c^T X_p + k_c r$

Closed-loop: $\dot{X}_p = [A_p + b_p \theta_c^T] X_p + b_p k_c r$

Matching conditions: $A_p + b_p \theta^* T = A_m; b_p k^* = b_m$
Adaptive Control of nth order plants - with single input

Plant: \[\dot{X}_p = A_p X_p + b_p u, \quad A_p \in \mathbb{R}^{n \times n}, \quad b_p \in \mathbb{R}^n, \quad u \in \mathbb{R} \]

Controller: \[u = \theta_c^T X_p + k_c r \]

Closed-loop: \[\dot{X}_p = \left[A_p + b_p \theta_c^T \right] X_p + b_p k_c r \]

Matching conditions: \[A_p + b_p \theta^* T = A_m; \quad b_p k^* = b_m \]

Reference Model \[\dot{X}_m = A_m X_m + b_m r \]
Adaptive Control of nth order plants - with single input

Plant: $\dot{X}_p = A_p X_p + b_p u, A_p \in \mathbb{R}^{n \times n}, b_p \in \mathbb{R}^n, u \in \mathbb{R}$

Controller: $u = \theta_c^T X_p + k_c r$

Closed-loop: $\dot{X}_p = [A_p + b_p \theta_c^T] X_p + b_p k_c r$

Matching conditions: $A_p + b_p \theta^* T = A_m; b_p k^* = b_m$

Reference Model $\dot{X}_m = A_m X_m + b_m r$

Solution: $\theta_c = \theta^*, k_c = k^*$
Adaptive Control of \(n \)th order plants - with single input

Plant: \[\dot{X}_p = A_p X_p + b_p u, \ A_p \in \mathbb{R}^{n \times n}, \ b_p \in \mathbb{R}^n, \ u \in \mathbb{R} \]

Controller: \[u = \theta_c^T X_p + k_c r \]

Closed-loop: \[\dot{X}_p = [A_p + b_p \theta_c^T] X_p + b_p k_c r \]

Matching conditions: \[A_p + b_p \theta^*^T = A_m; \ b_p k^* = b_m \]

Reference Model: \[\dot{X}_m = A_m X_m + b_m r \]

Solution: \[\theta_c = \theta^*, \ k_c = k^* \]

\(A_p, b_p \) unknown \(\implies \theta^*, k^* \) unknown

Choose Controller: \[u = \theta^T(t) X_p + k(t) r \]
Adaptive Control of \(n \)th order plants - with single input

Plant: \(\dot{X}_p = A_p X_p + b_p u, A_p \in \mathbb{R}^{n \times n}, b_p \in \mathbb{R}^n, u \in \mathbb{R} \)

Controller: \(u = \theta^T_c X_p + k_c r \)

Closed-loop: \(\dot{X}_p = [A_p + b_p \theta^T_c] X_p + b_p k_c r \)

Matching conditions: \(A_p + b_p \theta^*^T = A_m; b_p k^* = b_m \)

Reference Model
\(\dot{X}_m = A_m X_m + b_m r \)

Solution: \(\theta_c = \theta^*, k_c = k^* \)

\(A_p, b_p \) unknown \(\implies \theta^*, k^* \) unknown

Choose Controller: \(u = \theta^T(t) X_p + k(t) r \)

Closed-loop: \(\dot{X}_p = [A_p + b_p \theta^T(t)] X_p + b_p (k^* + \tilde{k}) r \)
Adaptive Control of \(n \)th order plants - with single input

Plant: \(\dot{X}_p = A_p X_p + b_p u, \ A_p \in \mathbb{R}^{n \times n}, \ b_p \in \mathbb{R}^n, \ u \in \mathbb{R} \)

Controller: \(u = \theta^T_c X_p + k_c r \)

Closed-loop: \(\dot{X}_p = [A_p + b_p \theta^T_c] X_p + b_p k_c r \)

Matching conditions: \(A_p + b_p \theta^* T = A_m; \ b_p k^* = b_m \)

Reference Model

\(\dot{X}_m = A_m X_m + b_m r \)

Solution: \(\theta_c = \theta^*, \ k_c = k^* \)

\(A_p, b_p \) unknown \(\implies \) \(\theta^*, k^* \) unknown

Choose Controller: \(u = \theta^T(t) X_p + k(t) r \)

Closed-loop: \(\dot{X}_p = [A_p + b_p \theta^T(t)] X_p + b_p (k^* + \tilde{k}) r \)

\(= A_m X_p + b_p \left(\tilde{\theta}^T X_p + \tilde{k} r \right) + b_m r \)
Error Model 2 and Stability Analysis

Error equation:
\[
\dot{e} = A_m e + b_p \left(\tilde{\theta}^T X_p + \tilde{k} r \right)
\]
Error Model 2 and Stability Analysis

Error equation: \[
\dot{e} = A_m e + b_p \left(\tilde{\theta}^T X_p + \tilde{k} r \right)
\]

\[
V = e^T P e + |k^*| \left(\tilde{\theta}^T \tilde{\theta} + \tilde{k}^2 \right)
\]
Error Model 2 and Stability Analysis

Error equation:
\[\dot{e} = A_m e + b_p \left(\tilde{\theta}^T X_p + \tilde{k} r \right) \]
\[V = e^T P e + |k^*| \left(\tilde{\theta}^T \tilde{\theta} + \tilde{k}^2 \right) \]
\[\dot{V} = e^T [A_m^T P + P A_m] e + 2 e^T P b_p \tilde{\theta}^T X_p + 2 |k^*| \tilde{\theta}^T \dot{\tilde{\theta}} \]
\[+ 2 e^T P b_p \tilde{k} r + 2 |k^*| \tilde{k} \dot{\tilde{k}} \]
\[= -e^T Q e \]

if \(\dot{\tilde{\theta}} = -\text{sign}(k^*) e^T P b_m X_p \), \(\dot{\tilde{k}} = -\text{sign}(k^*) e^T P b_m r \)

\(\Rightarrow e(t), \tilde{\theta}(t), \text{ and } \tilde{k}(t) \) are bounded for all \(t \geq t_0 \)
Error Model 2 and Stability Analysis

\[[X_p] \rightarrow \begin{bmatrix} \tilde{\theta} \\ \tilde{k} \end{bmatrix}^T \rightarrow (sI - A_m)^{-1}b_p \rightarrow e \]

Error equation:
\[\dot{e} = A_m e + b_p \left(\tilde{\theta}^T X_p + \tilde{k} r \right) \]

\[V = e^T P e + |k^*| \left(\tilde{\theta}^T \tilde{\theta} + \tilde{k}^2 \right) \]

\[\dot{V} = e^T \left[A_m^T P + P A_m \right] e + 2e^T P b_p \tilde{\theta}^T X_p + 2|k^*| \tilde{\theta}^T \dot{\tilde{\theta}} + 2e^T P b_p \tilde{k} r + 2|k^*| \tilde{k} \dot{\tilde{k}} \]

\[\dot{V} = -e^T Q e \]

if \[\tilde{\theta} = -sign(k^*) e^T P b_m X_p, \tilde{k}^* = -sign(k^*) e^T P b_m r \]

\[\Rightarrow e(t), \tilde{\theta}(t), \text{ and } \tilde{k}(t) \text{ are bounded for all } t \geq t_0 \]

\[\lim_{t \to \infty} e(t) = 0 \text{ from Barbalat’s Lemma} \]
LTI System: \(\dot{x} = A_m x \)

Theorem: Given \(Q = Q^T > 0 \), there exists \(P = P^T > 0 \) that solves
\[
A^T_m P + PA_m = -Q
\]
if and only if \(A_m \) is a Hurwitz matrix.

Main implication:
\[
\dot{V} = x^T P \dot{x} = x^T \left[A^T_m P + PA_m \right] x = -x^T Q x < 0
\]
Lyapunov functions and Linear Time-invariant Systems

LTI System: \[\dot{x} = A_m x \]

Theorem: Given \(Q = Q^T > 0 \), there exists \(P = P^T > 0 \) that solves
\[
A_m^T P + PA_m = -Q
\]
if and only if \(A_m \) is a Hurwitz matrix.
Lyapunov functions and Linear Time-invariant Systems

LTI System: \[\dot{x} = A_m x \]

Theorem: Given \(Q = Q^T > 0 \), there exists \(P = P^T > 0 \) that solves
\[
A_m^T P + P A_m = -Q
\]
if and only if \(A_m \) is a Hurwitz matrix.

Main implication:
\[
V = x^T P x
\]
LTI System: \[\dot{x} = A_m x \]

Theorem: Given \(Q = Q^T > 0 \), there exists \(P = P^T > 0 \) that solves

\[A_m^T P + PA_m = -Q \]

if and only if \(A_m \) is a Hurwitz matrix.

Main implication:

\[\begin{align*}
V &= x^T P x \\
\dot{V} &= x^T [A_m^T P + PA_m] x
\end{align*} \]
Lyapunov functions and Linear Time-invariant Systems

LTI System: \(\dot{x} = A_m x \)

Theorem: Given \(Q = Q^T > 0 \), there exists \(P = P^T > 0 \) that solves
\[
A_m^T P + PA_m = -Q
\]
if and only if \(A_m \) is a Hurwitz matrix.

Main implication:
\[
V = x^T P x \\
\dot{V} = x^T [A_m^T P + PA_m] x \\
= -x^T Q x < 0
\]
Overall Adaptive System - single input

Assumption: θ^* and k^* exist such that

$$b_p k^* = b_m$$
$$A_p + b_p \theta^{*\top} = A_m$$

$$\dot{\theta} = -\text{sign}(k^*) e^\top P b_m X_p$$
$$\dot{k} = -\text{sign}(k^*) e^\top P b_m r$$

\Rightarrow Stability, $e(t) \to 0$
Adaptive Control of nth order plants - with multiple inputs

Plant: $\dot{X}_p = A_pX_p + B_pu,$

$A_p \in \mathbb{R}^{n \times n}, \quad B_p \in \mathbb{R}^{n \times m}, \quad u \in \mathbb{R}^m$
Adaptive Control of nth order plants - with multiple inputs

Plant: \[\dot{X}_p = A_p X_p + B_p u, \]
\[A_p \in \mathbb{R}^{n \times n}, \quad B_p \in \mathbb{R}^{n \times m}, \quad u \in \mathbb{R}^m \]

Controller: \[u = \Theta_{Ac} X_p + \Theta_{Bc} r \]

Closed-loop: \[\dot{X}_p = [A_p + B_p \Theta_{Ac}] X_p + B_p \Theta_{Bc} r \]
Adaptive Control of nth order plants - with multiple inputs

Plant: \[\dot{X}_p = A_p X_p + B_p u, \]
\[A_p \in \mathbb{R}^{n \times n}, \quad B_p \in \mathbb{R}^{n \times m}, \quad u \in \mathbb{R}^m \]

Controller: \[u = \Theta_{Ac} X_p + \Theta_{Bc} r \]

Closed-loop: \[\dot{X}_p = [A_p + B_p \Theta_{Ac}] X_p + B_p \Theta_{Bc} r \]

Matching conditions: \[A_p + B_p \Theta^*_A = A_m; \quad B_p \Theta^*_B = B_m \]
Adaptive Control of nth order plants - with multiple inputs

Plant: \[
\dot{X}_p = A_p X_p + B_p u,
\]
\[
A_p \in \mathbb{R}^{n \times n}, \quad B_p \in \mathbb{R}^{n \times m}, \quad u \in \mathbb{R}^m
\]

Controller: \[
\dot{X}_p = \Theta_{Ac} X_p + \Theta_{Bc} r
\]

Closed-loop: \[
\dot{X}_p = [A_p + B_p \Theta_{Ac}] X_p + B_p \Theta_{Bc} r
\]

Matching conditions: \[
A_p + B_p \Theta_A^* = A_m; \quad B_p \Theta_B^* = B_m
\]

Reference Model \[
\dot{X}_m = A_m X_m + B_m r
\]
Adaptive Control of nth order plants - with multiple inputs

Plant: \(\dot{X}_p = A_p X_p + B_p u, \)
\(A_p \in \mathbb{R}^{n \times n}, \quad B_p \in \mathbb{R}^{n \times m}, \quad u \in \mathbb{R}^m \)

Controller: \(u = \Theta_{Ac} X_p + \Theta_{Bc} r \)

Closed-loop: \(\dot{X}_p = [A_p + B_p \Theta_{Ac}] X_p + B_p \Theta_{Bc} r \)

Matching conditions:
\(A_p + B_p \Theta_A^* = A_m; \quad B_p \Theta_B^* = B_m \)

Reference Model
\(\dot{X}_m = A_m X_m + B_m r \)

Solution: \(\Theta_{Ac} = \Theta_A^*, \quad \Theta_{Bc} = \Theta_B^* \)

(aanna@mit.edu)

Jan 22, 1400-1500
Adaptive Control of nth order plants - with multiple inputs

Plant: \[\dot{X}_p = A_p X_p + B_p u, \]
\[A_p \in \mathbb{R}^{n \times n}, \quad B_p \in \mathbb{R}^{n \times m}, \quad u \in \mathbb{R}^m \]

Controller: \[u = \Theta_{Ac} X_p + \Theta_{Bc} r \]

Closed-loop: \[\dot{X}_p = [A_p + B_p \Theta_{Ac}] X_p + B_p \Theta_{Bc} r \]

Matching conditions: \[A_p + B_p \Theta_A^* = A_m; \quad B_p \Theta_B^* = B_m \]

Reference Model \[\dot{X}_m = A_m X_m + B_m r \]

Solution: \[\Theta_{Ac} = \Theta_A^*, \quad \Theta_{Bc} = \Theta_B^* \]
\[\Theta_A^* \in \mathbb{R}^{m \times n}, \quad \Theta_B^* \in \mathbb{R}^{m \times m} \]

A_p, B_p unknown \[\implies \Theta_A^*, \Theta_B^* \text{ unknown} \]
Adaptive Control of \(n \)th order plants - with multiple inputs; \(B_p \) known

Plant:
\[
\dot{X}_p = A_p X_p + B_p u
\]

Choose Controller:
\[
u = \Theta_A(t) X_p + \Theta_B^* r
\]
Adaptive Control of \(n \)th order plants - with multiple inputs; \(B_p \) known

Plant: \(\dot{X}_p = A_p X_p + B_p u \)

Choose Controller: \(u = \Theta_A(t) X_p + \Theta_B^* r \)

Closed-loop: \(\dot{X}_p = [A_p + B_p \Theta_A(t)] X_p + B_p \Theta_B^* r \)
Adaptive Control of nth order plants - with multiple inputs; B_p known

Plant: \[\dot{X}_p = A_pX_p + B_pu \]

Choose Controller: \[u = \Theta_A(t)X_p + \Theta^*_B r \]

Closed-loop: \[\dot{X}_p = [A_p + B_p\Theta_A(t)]X_p + B_p\Theta^*_B r \]

\[A_p + B_p\Theta^*_A = A_m; \quad B_p\Theta^*_B = B_m, \quad \tilde{\Theta}_A = \Theta_A - \Theta^*_A \]
Adaptive Control of \(n \)th order plants - with multiple inputs; \(B_p \) known

Plant: \[\dot{X}_p = A_p X_p + B_p u \]

Choose Controller: \[u = \Theta_A(t) X_p + \Theta_B^* r \]

Closed-loop: \[\dot{X}_p = [A_p + B_p \Theta_A(t)] X_p + B_p \Theta_B^* r \]

\[
\begin{align*}
A_p + B_p \Theta_A^* &= A_m; & B_p \Theta_B^* &= B_m; & \tilde{\Theta}_A &= \Theta_A - \Theta_A^* \\
\dot{X}_p &= A_m X_p + B_p \tilde{\Theta}_A X_p + B_m r
\end{align*}
\]
Adaptive Control of nth order plants - with multiple inputs; B_p known

Plant: $\dot{X}_p = A_p X_p + B_p u$

Choose Controller: $u = \Theta_A(t) X_p + \Theta_B^* r$

Closed-loop: $\dot{X}_p = [A_p + B_p \Theta_A(t)] X_p + B_p \Theta_B^* r$

$A_p + B_p \Theta_A^* = A_m$; $B_p \Theta_B^* = B_m$, $\tilde{\Theta}_A = \Theta_A - \Theta_A^*$

$\dot{X}_p = A_m X_p + B_p \tilde{\Theta}_A X_p + B_m r$

Reference Model $\dot{X}_m = A_m X_m + B_m r$
Adaptive Control of \(n \)th order plants - with multiple inputs; \(B_p \) known

Plant: \[\dot{X}_p = A_p X_p + B_p u \]

Choose Controller: \[u = \Theta_A(t) X_p + \Theta_B^* r \]

Closed-loop: \[\dot{X}_p = [A_p + B_p \Theta_A(t)] X_p + B_p \Theta_B^* r \]

\[A_p + B_p \Theta_A^* = A_m; \quad B_p \Theta_B^* = B_m, \quad \tilde{\Theta}_A = \Theta_A - \Theta_A^* \]

\[\dot{X}_p = A_m X_p + B_p \tilde{\Theta}_A X_p + B_m r \]

Reference Model \[\dot{X}_m = A_m X_m + B_m r \]

Error Model \[\dot{e} = A_m e + B_p \tilde{\Theta}_A X_p \]

Reading: 3.4, 2.4.4
Error Model 2 and Stability Analysis

Error equation: \(\dot{e} = A_m e + B_p \tilde{\Theta}_A X_p \)
Error Model 2 and Stability Analysis

Error equation: \[\dot{e} = A_m e + B_p \tilde{\Theta}_A X_p \]

\[\tilde{\Theta}_A \in \mathbb{R}^{m \times n} \]
Error Model 2 and Stability Analysis

Error equation: \[\dot{e} = A_m e + B_p \tilde{\Theta}_A X_p \]
\[\tilde{\Theta}_A \in \mathbb{R}^{m \times n} \]

Use of Trace operator: converts matrices to scalars.
Error Model 2 and Stability Analysis

Error equation: \[
\dot{e} = A_m e + B_p \tilde{\Theta}_A X_p
\]

\[
\tilde{\Theta}_A \in \mathbb{R}^{m \times n}
\]

Use of Trace operator: converts matrices to scalars.

\[
\text{Trace}(ab^T) = b^T a, \quad a, b \in \mathbb{R}^n
\]
Error equation: \[\dot{e} = A_m e + B_p \tilde{\Theta}_A X_p \]
\[\tilde{\Theta}_A \in \mathbb{R}^{m \times n} \]

Use of $Trace$ operator: converts matrices to scalars.

\[Trace(ab^T) = b^T a, \quad a, b \in \mathbb{R}^n \]

\[V = e^T Pe + Tr \left(\tilde{\Theta}_A^T \tilde{\Theta}_A \right) \]
Error Model 2 and Stability Analysis

Error equation: \(\dot{e} = A_m e + B_p \tilde{\Theta}_A X_p \)
\(\tilde{\Theta}_A \in \mathbb{R}^{m \times n} \)

Use of Trace operator: converts matrices to scalars.

\[\text{Trace}(ab^T) = b^T a, \quad a, b \in \mathbb{R}^n \]

\[V = e^T P e + \text{Tr} \left(\tilde{\Theta}_A^T \tilde{\Theta}_A \right) \]

\[\dot{V} = e^T [A_m^T P + PA_m] e + 2 e^T P B_p \tilde{\Theta}_A X_p + 2 \text{Tr} \left(\tilde{\Theta}_A^T \dot{\tilde{\Theta}}_A \right) \]

Choose \(\dot{\tilde{\Theta}}_A = -B_p^T P e X_p^T \)

\[\dot{V} = -e^T Q e \leq 0 \]

\[\lim_{t \to \infty} e(t) = 0 \text{ from Barbalat's Lemma} \]
Error Model 2 and Stability Analysis

Error equation: \(\dot{e} = A_m e + B_p \tilde{\Theta}_A X_p \)

\(\tilde{\Theta}_A \in \mathbb{R}^{m \times n} \)

Use of Trace operator: converts matrices to scalars.

\[
\text{Trace}(ab^T) = b^T a, \quad a, b \in \mathbb{R}^n
\]

\[
V = e^T P e + \text{Tr} \left(\tilde{\Theta}_A^T \tilde{\Theta}_A \right)
\]

\[
\dot{V} = e^T [A_m^T P + P A_m] e + 2 e^T P B_p \tilde{\Theta}_A X_p + 2 \text{Tr} \left(\tilde{\Theta}_A^T \dot{\tilde{\Theta}}_A \right)
\]

Choose \(\dot{\tilde{\Theta}}_A = -B_p^T P e X_p^T \)

\[
\dot{V} = -e^T Q e \leq 0
\]

\(\Rightarrow e(t) \) and \(\tilde{\Theta}_A(t) \) are bounded for all \(t \geq t_0 \)
Error equation: \[\dot{e} = A_m e + B_p \tilde{\Theta}_A X_p \]
\[\tilde{\Theta}_A \in \mathbb{R}^{m \times n} \]

Use of Trace operator: converts matrices to scalars.

\[\text{Trace}(ab^T) = b^T a, \quad a, b \in \mathbb{R}^n \]

\[V = e^T P e + \text{Tr} \left(\tilde{\Theta}_A^T \tilde{\Theta}_A \right) \]

\[\dot{V} = e^T [A_m^T P + PA_m] e + 2 e^T P B_p \tilde{\Theta}_A X_p + 2 \text{Tr} \left(\tilde{\Theta}_A^T \dot{\tilde{\Theta}}_A \right) \]

Choose \(\dot{\tilde{\Theta}}_A = -B_p^T P e X_p^T \)

\[\dot{V} = -e^T Q e \leq 0 \]

\[\Rightarrow e(t) \quad \text{and} \quad \tilde{\Theta}_A(t) \quad \text{are bounded for all} \quad t \geq t_0 \]

\[\lim_{t \to \infty} e(t) = 0 \quad \text{from Barbalat’s Lemma} \]