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Abstract. A shared flight control framework between an autopilot and a human pilot is proposed 

to ensure resilient performance following an anomaly. The human pilot is modeled using a 
perception component and an adaptation component. The concept of Capacity for Maneuver 
(CfM) is used to develop the perception component, and an adaptation component similar to the 
concepts proposed in the flight control literature is used. The shared control architecture is 
evaluated in the context of flight control, where an anomaly is modeled as a sudden change in 
the underlying flight dynamics, with resilient performance defined as reduced command tracking 
error. Simulation studies show that with no shared control, introduction of an anomaly 
significantly degrades the resilience, while the proposed shared control results in almost 
identical performance after the anomaly.   
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Introduction. Enhancing automated control capabilities can improve precision, speed, and 
robustness to well modeled disturbances. Nevertheless, automated processes have limits that 
define a boundary or envelope. When conditions, context, and disturbances occur that fall 
outside of this envelope, surprising events can occur and produce a cascade of additional 
disturbances that exceed the capabilities of automated control (Woods and Sarter 2000). Such 
anomalies require engagement of human supervisors from other activities to re-assess the 
situation and intervene quickly and decisively to forestall failures — a form of shared control that 
can be termed as Bumpless Re-engagement. But today when these human supervisory 
functions are needed, they are poorly supported, cost intensive, and often slow or erroneous 
(Woods and Hollnagel 2006). In other words, shared control breaks down, and a shift is required 
from “textbook” autonomous performance to handling anomalous events with high potential to 
cascade toward failure.  

 

Current forms of shared control assume a partially autonomous machine does all of the work to 
handle variability — until external demands imposed on the machine exceed the automation's 
capabilities to handle the situation — then control is transferred to people who have to take over 
when the situation is difficult to handle. This form of shared control virtually guarantees bumpy 
and late transfers of control that increase the risk of decompensation — inability of a human-
machine system to keep pace with growing or cascading demands (Woods 2011). In real cases 
of human supervision of automation based on this model, the bumpy and late transfers of 
control have contributed to actual accidents (Job 1998; Woods 2006, Chapter 10).  

 

This paper uses a classic flight control problem to introduce a novel approach to provide 
improved shared control.  The new method is based on the concept of Capacity for Maneuver 
(CfM) – the remaining range or capacity to continue to respond to ongoing and upcoming 
demands (Woods and Branlat 2011). Control then should seek to minimize the risk of 
exhausting a unit’s capacity for maneuver as that agent responds to changing and increasing 
demands (risk of saturation).  

 

We are proposing a resilient shared control architecture based on reducing the risk of saturating 
CfM that allows a timely and effective human re-engagement following an anomaly to sustain a 
desired tracking performance. A problem in flight dynamics is chosen (Hess 2015) to 
demonstrate the potential benefits of the new architecture as it can involve human-machine 
interaction in response to anomalous situations (Belcastro et al. 2010; Glussich et al. 2010; 
Woods and Sarter 2000). Control performance is compared in the case of fully automated flight 
control with the new shared control architecture, where a model of the human pilot takes over 
control following an anomaly. The human pilot model uses the new resilient control approach 
utilizing the information about CfM.  

 

Flight Control Problem and Shared Control. Bumpy transfer of control to human pilot 
following an anomaly can result in loss of control and disastrous consequences. Figure 1 shows 
a simple block diagram of manual/auto-pilot control of an aircraft, where 𝑌𝑐(𝑠) denotes the flight 
dynamics, M denotes a flight variable of interest (e.g. flight path angle, or roll angle), and the 
goal is for M to follow the command signal as closely as possible. 𝐺𝑀(𝑠) and 𝐺𝐴(𝑠) denote the 
mathematical model of the manual pilot and the auto-pilot, respectively, representing the 
response time and gain characteristics of the two controllers, with 𝑠 denoting the differential 
operator 𝑑/𝑑𝑡. The goal is the timely and effective switching between 𝐺𝑀(𝑠) and 𝐺𝐴(𝑠) so as to 

minimize the error between M and the command signal (𝑀𝑐𝑚𝑑), especially after the occurrence 
of an anomaly.  
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Figure 1:  Shared Aircraft Control. The aircraft is controlled by autopilot in nominal case. The 
pilot takes over control following any special occurrences or anomalies.  

 
Flight control is a well understood and well researched topic in aeronautics, with several 
textbooks written on the subject (Stevens et al. 2015; and Lavretsky et al. 2012). Basic 
principles of autopilot design that ensures satisfactory command tracking are laid out in these 
texts and elsewhere in the literature. Mathematical models of human pilot behavior have also 
been researched extensively, with seminal contributions by McRuer (McRuer 1980). Detailed 
models of the pilot behavior, especially at frequencies where stable feedback action is most 
urgently needed, have been developed (McRuer 1980; Hess 2006, 2009, 2014, 2015). The 
result is the cross-over model which has been used extensively in autopilot and fly-by-wire 
designs for nominal flight control. More recently, these models have been studied (Hess 2009, 
2014, 2015) to understand a pilot’s actions following anomalous events that may produce a 
significant change in the flight dynamics. The framework we develop in this paper builds on 
autopilot designs and human pilot models that have been proposed in these earlier works (Hess 
2015), and consists of a perception component, which detects the occurrence of an anomaly in 
a swift and accurate manner, and an adaptation component that prompts the pilot to improve 
performance. The perception component is built on the notion of resilient control using the 
actuator’s capacity for maneuver (CfM). Based on the results of the perception metric, the 
adaptation component seeks to sustain the tracking error within acceptable limits in the shortest 
time window. The overall resilient control architecture we propose consists of both the 
perception and adaptation components. The paper presents results that, with this architecture, 
the tracking performance remains within the desired boundary even after the occurrence of an 
anomaly.  
 
Shared Control Architecture. A schematic of the autopilot and the manual pilot action for flight 
control are shown in Figures 2(A) and 2(B). In this figure, 𝑌𝑐(𝑠) denotes the aircraft dynamics. 𝐸 

and 𝑅 denote the perceived position and rate error respectively. The autopilot action consists of 

measuring a rate 𝑀̇ and a position 𝑀, and using those measurements together with the 
command and feedback control gains 𝐾𝑟 and 𝐾𝑝 to compute the necessary compensation, 

denoted as 𝑣. This signal is in turn fed to an actuator in the aircraft, which is a transducer that 
converts this electronic signal into a desired control surface deflection. Every transducer has 
physical limits and maximum boundaries which is modeled here by a saturation function (𝑓) 

mainly affecting the amplitude. The values beyond certain threshold (𝑢0) will be clamped as they 
are not effective on the aircraft actuators. The goal of the overall autopilot design, as mentioned 
earlier, is to design 𝐾𝑟 and 𝐾𝑝 to achieve desired tracking performance. While the schematic 

presented in this figure is somewhat simplified, it encapsulates the general principle of an 
autopilot.  
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Figure 2:  A Schematic of Flight Control Using (A) Autopilot and (B) Manual Pilot Actions 
(shown in inside dashed rectangles). The goal in both (A) and (B) is to take an action u so that 
the aircraft variable M tracks the command signal Mcmd.  
 
Figure 2(B) represents the action of a human pilot, following models outlined in (Hess 2006, 
2009, 2014, 2015). As shown above, the human pilot can be divided broadly into a perception 
component followed by an action component. The perception component represents cognitive 
levels of processing, as the pilot continuously monitors the flight variable M as well as its rate of 
change 𝑀, compares them with the desired values, and also identifies an anomaly. The action 
component uses the perceived errors and scales them into an appropriate signal which is sent 
to the pilot’s neuromuscular system. The outcome of neuromuscular system is a manual action 
on the control stick, which is then fed to an aircraft actuator via the saturation function.  
 
In special case of an anomaly, an adaptation component is added to the action component in 
the form of suitable adjustments to the gains 𝐾𝑝 and 𝐾𝑟. This combination of perception and 

action components has been proposed as a pilot model in simulation studies of a linear 
single/two-axis vehicle model (Hess 2009), to explain the loss of control in a realistic transport 
aircraft model (Hess 2014) and for single/multi-axis nonlinear aircraft dynamics (Hess 2015).  
 
For the sake of completeness, we describe the perception and adaptation rules proposed in 
(Hess, 2015) below, both of which are nonlinear. In what follows, 𝐺(𝑠)[𝑧] denotes the output of a 

dynamic system with an input 𝑧  and a transfer function 𝐺(𝑠). The perception model of the 
human pilot proposed in (Hess 2015) is given by 
 

                                                  𝑥 = 𝐺1(𝑠)[𝑠𝑔𝑛(|𝑅| − |𝑀̇|). (|𝑅| − |𝑀̇|)
2] (1) 

                                                                 𝐺1(𝑠) =
1.52

𝑠2+1.5𝑠+1.52
 (2) 

                                        𝐾𝑡𝑟𝑖𝑔𝑔𝑒𝑟 = {
0         (√|𝑥| < 3. 𝑟 𝑠 (√|𝑥|)) ∪ (𝑡 < 𝑡0)

1          (√|𝑥| ≥ 3. 𝑟 𝑠(√|𝑥|)) ∩ (𝑡 ≥ 𝑡𝑠)
   (3) 
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𝐺1 denotes a dynamic operator to represent a perceptual lag of the human pilot. 𝐾𝑡𝑟𝑖𝑔𝑔𝑒𝑟 

denotes the occurrence of an anomaly, with zero representing a nominal case, and one 
denoting that an anomaly has occurred. 𝑡0 denotes the instant at which an anomaly occurs. 𝑡𝑠 is 
selected a small time to avoid false positives at the initiation of simulation in nominal condition.  
 
The adaptation model of the human pilot proposed in (Hess, 2015) is given by 
 

                                                             𝐾̇𝑟 = 𝐺2(𝑠)[𝑥  𝐾𝑡𝑟𝑖𝑔𝑔𝑒𝑟] (4) 

                                                                    𝐺2(𝑠) =
1

𝑠2+2𝑠+1
 (5) 

                                                              𝑥 = 𝐺2(𝑠) [
𝑥

𝑟𝑚𝑠(𝑅2)
∙
1

𝑁
] (6) 

                                                          𝐾̇𝑝 = {
0.35𝐾̇𝑟       𝐾̇𝑟 > 0

0                  𝐾̇𝑟 ≤ 0
   (7)  

 
N is the number of response variables being controlled by the pilot in the multi-axis tasks, and 

𝐺2 represents an inherent filtering action of the pilot. The action component uses the gains 
computed as above to produce the stick motion through a conversion into an appropriate input 
to the neuromuscular system (see Figure 2(B)). 
 
The adaptation rules in Eqs. (4)-(7) essentially enable a change from nominal values of 𝐾𝑟 and 
𝐾𝑝 to new values. This ad-hoc adaptive framework has been developed based on the expert’s 

experience in choosing gain values for the simplified command following model (Hess 2006).  
Inspired by this method (Hess 2015), we introduce a perception algorithm different from (1)-(3) 
that is based on actuator’s capacity for maneuver (CfM) as a trigger for detecting the occurrence 
of an anomaly, so as to meet the goal of ensuring resilience. This perception algorithm is 
described below:   

                                        𝐶(𝑡) =  𝑢0 −  (
1

𝑡
∫ 𝑢(𝜏)2𝑑𝜏
𝑡

0
)

1

2
, 𝑡 > 0 (8) 

The perception trigger is defined as:  

                                                              𝐾𝑡 = {
0          |𝐹0| < 1
1          |𝐹0| ≥ 1

   (9) 

                                                                 𝐹0 = 𝐺1(𝑠)[𝐹(𝑡)] (10) 

                                                                    𝐹(𝑡) =
𝐶̇(𝑡)−𝜇

3𝜎
 (11) 

 
The parameters 𝜇 and 𝜎 are chosen based on statistical properties of the CfM during nominal 
operation of the aircraft and also to ensure prompt anomaly detection.  
 
Using the perception algorithm proposed above in Eqs. (8)-(11) and the same adaptation model 
as in Eqs. (4)-(7), the shared control architecture that we propose in this paper proceeds as 
follows. Under nominal conditions, an autopilot is in place, as described in Figure 2(A). The pilot 

implicitly monitors the perception trigger defined in Eq. (9) and, when 𝐾𝑡 becomes one, takes 
over the control. The perception rule also triggers the adaptive component specified in Eqs. (4)-
(7) so as to improve the pilot’s performance. The overall shared architecture is then shown to 

result in a satisfactory performance in terms of maintaining the same tracking error, 𝐸𝑟𝑚𝑠 
(defined in Eq. (17)) before and after the anomaly, and therefore strong resilience.  
 
Validation of the Shared Control Architecture.  The anomaly that we simulate is the same as 

in (Hess 2015), and corresponds to a change in the aircraft dynamics 𝑌𝑐(𝑠) as follows.  
The initial aircraft dynamic is modeled by 
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                                                                  𝑌𝑐 = 
1

𝑠(𝑠+10)
  (12) 

and it is assumed that when an anomaly occurs, the aircraft dynamics changes suddenly to 
 

                                                               𝑌𝑐 = 
𝑒−0.2𝑠

𝑠(𝑠+5)(𝑠+10) 
  (13) 

 
The command signal that needs to be tracked is selected following (Hess 2015) as a 
combination of sinusoids, given by 
 
   𝑀𝑐𝑚𝑑(𝑡) = 0.033 sin(0.06𝜋𝑡) + 0.041 sin(0.14𝜋𝑡) + 0.047sin (0.26𝜋𝑡) + 0.047sin (0.46𝜋𝑡)  (14) 
 
The saturation function that represents magnitude limits in the actuator is defined as 
 

                                                   𝑓(. ) ≔ {
𝑢 = 𝑣                        |𝑣(𝑡)| ≤ 𝑢0
𝑢 = 𝑢0𝑠𝑔𝑛(𝑣)        |𝑣(𝑡)| > 𝑢0

   (15) 

with 𝑢0 = 10.   
 
The human neuromuscular system is modeled also as in (Hess 2006, 2009, 2014 and 2015) 
with a transfer function 𝐺 𝑚 given by 

                                                   𝐺 𝑚 =
100

𝑠2+2(0.707)10𝑠+100
 (16) 

 
N is 1; 𝑡𝑠 is set as 10s; and the statistical parameters of CfM were chosen as 𝜇 = 0, and 𝜎 =
0.036. These values were selected based on the nominal response of 𝐶(𝑡) observed over a 
500s window and also to provide prompt and enough trigger to the pilot.  
 
Results. A 500s simulation was considered in the presence of an anomaly at t = 50s, when the 
aircraft model was switched from model (12) to (13). Two case studies were carried out:  
Case 1) Autopilot control: The aircraft was controlled by autopilot for an entire period T = 500s 
Case 2) Shared control: The autopilot is engaged for the first 50s when an anomaly occurs and 
the control is transferred to manual pilot. In both cases, the gains (𝐾𝑝, 𝐾𝑟) were set to (3, 10) for 

the autopilot as well as the initial values of manual pilot immediately following the anomaly. 
Cases 1) and 2) were simulated using Eqs. (4)-(16) described above. The final values for (𝐾𝑝, 

𝐾𝑟) in the manual pilot were (7.2, 22.1). 
 
Figure 3 shows the details and performance of the shared controller in comparison with the 
autopilot. The shared controller shows lower tracking error which is almost as good as 
performance prior to anomaly. The CfM in (8), perception metric in (10), triggering signal in (9) 
and parameter adaptation of manual pilot in (4) and (7) are plotted. At t = 50 s the anomaly is 
introduced which is detected by the perception variable (𝐹0) and prompted by the trigger 
variable (𝐾𝑡). This results in an initial adaptation in parameters (𝐾𝑝, 𝐾𝑟). Consequently the 

perception process prompts three more instants of parameter adaptation to improve 
performance. The autopilot acting alone was not capable of either adaptation or managing 
utilization of the available CfM. 
 
A resilient performance metric was defined as the root mean square value of the tracking error 
𝑒(𝑡):  

                                      𝐸𝑟𝑚𝑠 =  (
1

𝑇
∫ 𝑒(𝜏)2𝑑𝜏
𝑇

0
)

1

2
  (17) 

                                                     𝑒(𝑡) = 𝑀𝑐𝑚𝑑(𝑡) −  𝑀(𝑡) (18) 
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Figure 3: Shared Control versus Autopilot. Top Panel: Tracking Performance: Command 
following of autopilot vs. shared control. Middle Panel 1: Capacity for Maneuver (CfM) in 
autopilot control and shared control. Middle Panel 2: Perception: CfM-based identification and 
triggering signal to re-engage and adapt the human pilot. Bottom Panel: Adaptation: Parameter 
adaption in manual pilot prompted by perception rule.   
 
Summary of the tracking performances from Case 1) and Case 2) is provided in Table 1. In both 

cases, the 𝐸𝑟𝑚𝑠 during in the first 50 seconds, and over the next 450 seconds after the anomaly 
(t = 50s) are provided. It is clear that in Case 1), the tracking error increases by 80% whereas in 
Case 2), the tracking error is maintained almost at the same level as before the anomaly.  
 

Table 1. Summary Results. 

Simulation Case Control Method   𝐸𝑟𝑚𝑠 (0-50s) 𝐸𝑟𝑚𝑠 (50-500s) 

1 Autopilot 0.029 0.053 

2 Shared  0.029 0.030 



A. B. Farjadian, et al. 

 
Summary and Conclusion. A shared flight control architecture that includes an autopilot and a 
human pilot is proposed to ensure resilient performance following an anomaly. The architecture 
includes a new perception component and an adaptation component proposed elsewhere in the 
flight control literature (Hess 2015). The anomaly consists of a sudden change in the aircraft 
dynamics. It was shown through simulation studies that our shared control architecture is 
capable of detecting the anomaly and triggering the pilot to re-engage and take over the control. 
The adaptive component is then engaged in the form of suitable adjustments to control gains. 
The final control performance is shown to result in the same desired tracking error before and 
after the anomaly. The human pilot used more of the available capacity for maneuver to keep up 
performance following the anomaly. The non-shared control resulted in a significant 
performance degradation and did not utilize the available CfM.  
 
The results reported here represent our first step in developing new methods for resilient shared 
control. In future studies, we will utilize CfM-based metrics not only for the perception 
component but also the adaptation component. The adaptation component will be developed in 
a more systematic way to provide the desired performance as well as higher CfM. How these 
shared controllers can reduce the risk of saturation and show graceful extensibility in face of 
surprising events will be explored (Woods 2015).  
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